Automatic Image Collection of Objects with
Similar Function by Learning Human Grasping
Forms

Shinya Morioka, Tadashi Matsuo, Yasuhiro Hiramoto, Nobutaka Shimada,
Yoshiaki Shirai

Ritsumeikan University, Shiga, Japan

Abstract. This paper proposes an automatic functional object segmen-
tation method based on modeling the relationship between grasping hand
form and the object appearance. First the relationship among a repre-
sentative grasping pattern and a position and pose of a object relative
to the hand is learned based on a few typical functional objects. By
learning local features from the hand grasping various tools with various
way to hold them, the proposed method can estimate the position, scale,
direction of the hand and the region of the grasped object. By some ex-
periments, we demonstrate that the proposed method can detect them
in cluttered backgrounds.

1 Introduction

Generic object detection from an image classifies image subregions into object
“categories”, which is more difficult task than specific object detection. Since
the object shape depends on the object function (thus on the grasping type) (as
known as “affordance”[2]), the image patterns of the grasping hand can be a
strong cues for the detection of a corresponding object category. Once a typi-
cal grasping pattern in an image is detected by some visual ques (SIFT, SURF
or edgelets), a unique hand-object coordinate type can be fixed based on the
relation between hand and object scale, position and orientation. Then accord-
ing to the alignment with the estimated hand-object coordinate, the normalized
object images can be automatically collected from live videos and its appear-
ance or shape characteristic common to the category can be analyzed. Once the
object-grasping-function relationship model[3, 5] is built for each grasping pat-
tern from the aligned images, the object function can be inferred by estimating
the grasping pattern through the model.

This paper proposes a machine learning based automatic object image col-
lector for object grasping scene. First the relationship among a representative
grasping pattern and a position and pose of a object relative to the hand is
learned based on a few typical functional objects. By learning local features
from the hand grasping various tools with various way to hold them, the pro-
posed method can estimate the position, scale, direction of the hand and the
region of the grasped object. By some experiments, we demonstrate that the
proposed method can detect them in cluttered backgrounds.



2 Detecting wrist position with randomized trees

2.1 Training of Randomized Trees model providing the probability
distribution of wrist positions

Randomized Trees (RTs)[4] is a multi-class classifier that accepts multi-dimensional
features and it provides probability distributions over the class indexes. Here we
construct RTs that can generate a probability distribution of a wrist position
from Speeded-Up Robust Features (SURF)[1] features.

First, we specify a wrist position for each training image with a simple back-
ground by hand as shown in Fig.1(a). To learn relation between a wrist position
and a set of SURF features as shown in Fig.1(b), we introduce a local coor-
dinate system for representing a wrist position relatively. It is defined by the
position, scale and orientation of the corresponding SURF feature as shown in
(Fig. 1(c)). By using such a local coordinate system, a relative position of a wrist
can be trained without depending on a position, scale or orientation of a hand
in a training image. Since RTs generate a probability distribution of a discrete
variable, a local coordinate space is segmented into finite number of blocks by
a grid and a wrist position is represented by a block including the position as
shown in Fig. 1(c). We assign a label for each block and assign a special label the
condition that a wrist exists on the outside of all blocks. A position of a wrist
can be represented by a pair of a label and a SURF feature. To estimate a label
from a SURF descriptor, we train RTs so that they can calculate a probability
distribution of such a label from a 128 dimensional SURF descriptor.

A label j is an index that means a block or background (the outside of all
blocks). A local region of a SURF feature is divided into some square blocks.
Each block is denoted as C;. When a wrist position is Xurist = (xwrist,ywrist)t
and a SURF feature f is detected on a hand, a label j of the SURF feature
f is defined as a block index j such that T} (Xurist) € Cj, where Ty denotes a
normalization into the local coordinate based on the position, scale and direction
of the SURF feature f.

A label of a SURF feature detected on background is defined as a special
index jpaer and it is distinguished from block indexes.

To learn the relation between a SURF feature f and its label j, we collect
many pairs of a SURF feature and its label from many teacher images where the
true wrist position is known. Then, we train Randomized Trees with the pairs
so that we can calculate a probability distribution P(j|f).

2.2 Wrist position detection based on votes from the probability
distribution of wrist positions

A wrist position is estimated by “voting” on the image space, based on the
probability distribution P(j|f) learned with the Randomized Trees. The votes
function Vieise(7,y) defined as 3~ ¢ 0 an SURF features V# (22 ¥), where

V(o y) = P(j=jlf) if 3C’3 s.t. Ty(z,y) € C5,
7 0 (otherwise) ,

(1)
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Fig.1: A local grid for representing a wrist position relatively

and P(j|f) is a probability distribution calculated by the trained Randomized
Trees.

The position with the maximum votes, arg max Viiss (, y), is considered as
zy
a position suitable for a wrist. However, the global maximum may not be the

true position because the votes mean a local likelihood and global comparison of
them makes no sense. Therefore, we allow multiple candidates of wrist positions
that have locally maximum votes.

To find local maxima without explicitly defining local regions, we use mean-
shift clustering. Seeds for the clustering are placed at regular intervals in the
image space as shown in Fig.2(a), where a blue point denotes a seed. a green
point denotes a trajectory, a red point denotes a limit of convergence and a green
and blue circle denotes the first and second wrist candidate, respectively. The
image space is clustered by limit positions of convergence (Fig.2(b)). For each
cluster, the position with the maximum votes is taken as a candidate (Fig.2(c)).

If a background region is larger than a hand region, the above voting is
disturbed by SURF features on the background. To overcome this, we roughly
distinguish SURF features on a hand from those on the other region by a Sup-
port Vector Machine (SVM). The SVM classifies a SURF feature into two classes,
which are “hand” and “background”. Teacher samples for the “hand” class are
extracted from images where a hand is placed on a simple background. Those for
the “background” class are extracted from images consisting of a complex back-
ground. The above voting algorithm is performed with SURF features classified
as the “hand” class.

An example of finding candidates is shown in Fig.3. First, SURF features are
extracted from an input image (Fig.3(a)). By using a SVM, they are roughly
classified and SURF features apparently originated from non-hand regions are
excluded (Fig.3(b),(c)). For each SURF feature f, local coordinate is defined
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and a conditional probability distribution P(j|f) is calculated by a Randomized
Trees(Fig.3(d),(e)). By voting based on the probability distribution, candidates
of wrist positions are determined (Fig.3(f),(g)).

3 Extraction of hand and object regions

We extract hand and object regions by using relation with local features. Its
rough process of training is following;

1. Generate training samples of pairs of an object center and a set of SURF
features on a hand (the section 3.1).

2. Train the Randomized Trees so that outputs a probability distribution of an
object center from a pair of a wrist position and a SURF feature on a hand
(the section 3.2).

3. Train a one-class SVM]6] for finding an object region and the other one-class
SVM for distinguishing whether a SURF feature is on a hand region or not
(the section 3.3).

The rough process of detection is following;

1. Estimate a wrist position by the method in the section 2.
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2. Estimate an object center by voting probabilities generated from the RTs
trained at the training step 2. All SURF features take part in the voting.

3. Find an object region by the one-class SVM trained at the step 3. Distinguish
SURF features on a hand from those on the other regions by another one-
class SVM trained at the step 3.

3.1 Estimating an object center by coarse classification

A wrist position can be found by the algorithm described in the section 2. In
addition to the wrist position, we use a center of gravity of an object, which
makes a coordinate system suitable for learning positional relation between a
hand and an object. For learning relation between the object center and a set of
features, we generate training samples by coarse classification of SURF features
extracted from images with simple backgrounds.

In an image of a hand grasping an object with simple background such as
Fig. 4(a), a SURF feature belongs to a hand class or an object class. We classify
such features (Fig. 4(b)) into the two classes by K-means clustering. On the
clustering, each feature is represented by a triplet consisting of a coordinate value
(z,y) of the feature and its “likelihood as a hand part” h. As a measure of the
likelihood, we take how much the feature contributed to Viyist(z,y) (Fig. 4(c))
used when determining the wrist position. The likelihood h of a SURF feature
f is defined as h = Vi (Zwrist, Ywrist), Where (Tyrist, Ywrist) denotes the estimated
wrist position. An example of the likelihood are shown in Fig. 4(d). By classifying
triplets, we can extract a set of SURF features on a hand as shown in Fig. 4(e).
An object center is estimated as the average position of SURF features on an
object as shown in Fig. 4(f).
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region from Mp;

3.2 Learning relation between an object center and a wrist position

By the method in the section 3.1, we have training sample images where an
object center, a wrist position and a hand region are known. To represent a
positional relation between an object center and a wrist position, we take a grid
defined by a SURF feature, which is introduced in the section 2.1. On the grid,
the relation can be represented by the positional difference between two blocks
(Fig. 5). We train RTs with the differences so that it can calculate a probability
distribution of a relative position of an object center from a pair of a wrist
position and a SURF feature. By using the RTs similarly as the section 2, an
object center can be estimated.

3.3 Learning one-class SVMs for finding an object region and
features on a hand

By using an object center and a wrist position, we can introduce a wrist-object
coordinate system (&, v), where the origin is the wrist position, one axis £ extends
to the object center and the distance between them is normalized as 1 (Fig.6).
It is suitable for learning positional relation between a hand and an object.

We generate a one-class SVM M,,; that receives a coordinate value (£, v) and
outputs true if the position is included in an object region. Since “likelihood as
an object part” cannot be estimated beforehand, we take a relative coordinate
value (£,v) of a SURF feature on an object region as a positive sample. Such
a feature can be collected by the method in Sec. 3.1. An example of a object
region derived from trained M, is shown as the blue region in Fig. 7, where
the red point means the wrist position.

We also generate another one-class SVM My,nq for distinguishing SURF
features on a hand from those on other regions. The SVM My, a4 is trained with
a set of a triplet (&, v, h), where h means “likelihood as a hand part” defined in
Sec. 3.1.

We classify each SURF feature f as follows;

1. If the SVM Mpang returns positive for the triplet (£,v, h) of the feature f,
it is classified as a hand feature.

2. If it is not classified as a hand feature and the SVM M,y,; returns positive
for the pair (£, v) of the feature, it is classified as an object feature.
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Fig. 9: A step-wise result of the proposed method

Fig. 10: Results for other images of a hand grasping a cup

3. Otherwise, it is classified as a background feature.

A result of feature classification is shown in Fig.8 In addition, an image can
be divided into an object region and the other region because the SVM My;
requires only a position.

4 Experimental result

We apply the proposed method to an image with complex background. The
result images of each step of the method are shown in Fig. 9. In the input image
(Fig. 9(a)), SURF features are extracted as Fig. 9(b). They generate Viyist (2, y)
as Fig. 9(c) and a wrist position can be estimated as (Fig. 9(d)). Although the
estimated wrist position is a little off the true wrist, an object center is found
correctly (Fig. 9(f)). By using the object center, the wrist position and the
likelihood as a hand part (Fig. 9(g)), we can detect an object region and class
of each SURF feature as Fig. 9(h). Results for other images of a hand grasping
a cup are shown in Fig. 10. They show that object regions are extracted well if
the ways of grasping a cup are different.
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Fig.11: Results for images of a hand grasping scissors

We also show results of a hand grasping scissors in Fig. 11. RTs and SVMs
are trained with images such as Fig. 11(a). As shown in Fig. 11(b), an object
center and a wrist position are correctly estimated, even though the grasped
scissors differ from that in the training images. Object regions are also correctly
estimated as shown in Fig. 11(c).

5 Conclusion

By integrating local features, a position of a hand can be estimated even if
its background is complex and the hand is partially hidden. With Randomized
Trees, a wrist can be found and a gravity center of an object can be estimated
from a set of the wrist and local features. The wrist and the object center make
a wrist-object coordinate system suitable for learning a shape of an object which
depends on how the object is grasped. In the future, we will try object recognition
by learning the relation between an object and a posture of a hand grasping it.
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