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Abstract 

 

We present a method to track and recognize shape-cha- 
nging hand gestures simultaneously. The switching linear 

model using active contour model well corresponds to 

temporal shapes and motions of hands. Inference in the 

switching linear model is computationally intractable, and 
therefore the learning process cannot be performed via the 

exact EM(Expectation Maximization) algorithm. However, 

we present an approximate EM algorithm using a col-

lapsing method in which some Gaussians are merged into 
a single Gaussian. Tracking is performed through the 

forward algorithm based on Kalman filtering and the col-

lapsing method. We also present the regularized smooth-

ing, which plays a role of reducing jump changes between 
the training sequences of state vectors to cope with com-

plex-variable hand shapes. The recognition process is 

performed by the selection of a model with the maximum 

likelihood from some learned models while tracking is 
being performed. Experiments for several shape-changing 

hand gestures are demonstrated. 

 

 

1. Introduction 

 

Gesture recognition plays an important role in a host of 

man-machine interaction applications. A well-known 

method in gesture recognition is HMM (Hidden Markov 
Model) [19,21,22,23], which is essentially a quantization 

of time series (observation sequence) into a small number 

of discrete states with transition probabilities between 

states. Most of schemes in gesture recognition are based 
on measurement spaces like HMM [3,5,15]. 

Although these showed successful results, there are 

two bottlenecks. First, based on the distributions of inde-

pendent measurements or observations, they have a limi-
tation in treating with time series having dependencies. 

Second, they also have difficulties when it is hard to 

measure the required information for recognition. Taking 

an instance of hand gestures. Taking an instance of shape 

changing hand gestures, measuring the outlines of the 

hand is not always feasible, especially under complicated 

backgrounds. 
We adopt a dynamic process to explain dependencies 

between spatio-temporal configurations of the sequence. 

In fact, if the motion of the hand is known in advance, that 

is, the dynamic model of the hand is known, we might be 
able to infer the positions and shapes of the hand over 

time. To model shape-changing hand gestures that exhibit 

complex and rich dynamic behaviors, we introduce 

switching linear dynamics [8,12,20] that consists of a few�
linear dynamic models with Markov switching between 

them, rather than a single linear dynamic model. A 

well-known problem in switching linear model, however, 

is that the presence of Markov switching makes exact in-
ference impossible. In this paper we use an approximate 

inference based on a collapsing method to avoid the prob-

lem. To estimate the parameters of switching linear model 

we present an EM learning process into which approxi-
mate inference using the collapsing method is well incor-

porated. 

Hand contours are parameterized into shape vectors by 

the active contour model, and the shape vectors are con-
sidered as state vectors in the switching linear model. For 

learning of the model it is necessary to collect training 

sequences of state vectors. When shape-changing hand 

gestures are considered, even though the outlines of a 
hand vary gradually over time, there often happen abrupt 

changes between the state vectors representing them due 

to separate parameterizations. This fact leads to poor 

learning or makes initial tracking impossible in the EM 
learning process. In this paper we propose the regularized 

smoothing method to solve this problem. It can make a 

training sequence of shape vectors vary gradually but the 

outlines of the hand remain invariant with allowable er-
rors. 

The first efforts at classification and tracking of hand 

gestures using active contour model and multiple dynamic 

model were made by Isard et al.[10]. They showed track-
ing of hand outlines and classification of different writing 

patterns. However they confined the scope of changes in 

hand shapes to affine transformation. Pavlovic and Rehg 



applied switching linear model to tracking of human fig-

ures [17]. They used Viterbi approximation to overcome 

the exponential complexity of exact inference. The above 
approaches did not handle online recognition during 

tracking, but concentrated on tracking of a human gesture 

or the problem of where to switch to another dynamics in 
time domain. Pentland and Liu modeled automobile driv-

ers' actions by Hidden Markov Dynamic Model in which 

Kalman filtering method is incorporated into HMM struc-

ture [16]. In their learning process, estimation of dynamic 
parameters was not incorporated into EM learning 

(Baum-Welch algorithm).  

The paper is organized as follows. In the following 

section we address the switching linear model. In section 
3, we concern practical problems in applying active con-

tour model to complex hand gestures and present the 

regularized smoothing. In section 4, we explain the EM 

learning using a collapsing method for the switching lin-
ear model. In section 5, we address the recognition proc-

ess where AIC criterion is put in use for online selection 

of the model. The experimental results are shown in sec-

tion 6. Finally, we conclude with section 7. 

 

2. Switching Linear Model 

 

Human describes any meaning by changing shapes of a 
hand besides moving positions of the hand. To model the-

se complex and rich dynamic behaviors, we introduce 

switching linear dynamics. Switching linear model can be 

seen as a hybrid model of the linear state-space model and 
HMM. It is described using the following set of 

state-space equations: 
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In the above equations, 
t
x  is a hidden continuous state 

vector. 
t

u  is independently distributed on the� Gaussian 

distribution with zero-mean and covariance 
t

m
Q .�

1m
π ,�

t
m

F and 
t

m
D , which are typical parameters of linear dy-

namic model, denote the prior probability of a discrete 

state, the continuous state transition matrix, and the offset, 

respectively. The parameters with the subscript 
t

m are 

dependent on the discrete state variable 
t

m indexing a lin-

ear dynamic model. And the switching process between 

discrete states obeys the first Markov process and is de-

fined with the discrete state transition matrixΦ . This 

model can be shown graphically as figure 1. 

 

2.1 Forward Algorithm 
 

Given known parameters of the switching linear model, 

{ }Φ,,,, πQDF , we can perform tracking or filtering, 

which means estimations of continuous states and prob-

abilities of joint-discrete states here. The predicted 

joint-continuous state vector and its covariance are de-

rived dependently on im
t
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 are estimations at time 1−t  

on the condition given observations up to time 1−t . 

Now the filtered joint-continuous state ),(
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ttx
 and its co-

variance ),(

|

ji

tt
P  are estimated by the conventional Kalman 

filtering. In particular, we follow Kalman filtering appli-

cation to active contour model by Blake[1][2]. 

 

 
 

Figure 1. Switching linear model 

Arrows denote probabilistic dependencies 

From the above fact, as noted by Gordon and Smith[6], 

switching linear dynamic model requires computing a 

Gaussian mixture with t

M components at time t  for 

M switching states. That leads to intractable inference for 

moderate sequence length. It is necessary to introduce 

some approximations to solve the intractable computation 

problem. 

We collapse 2
M joint-continuous state vectors 

intoM state variables at each time, and can avoid prohibi-

tive increase of computational cost. Building upon ideas 

introduced by Harrison[9], Gordon[6] and Kim[12], the 

collapsing is given by 
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where 
t

O  is a sequence ),,,(
21 t

ooo L  and 
t
o is an ob-

servation vector. In the above collapsing, the probabilities 

of joint-discrete states play a role of weighting factors of 

joint-continuous state vectors. To complete the collapsing, 

we have only to calculate the weighting factors.  
The probabilities of the filtered joint-discrete states are 

obtained as 
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where 
t
k  is a normalizing constant. Now the followings 

can be obtained as 
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2.2. Backward Algorithm 
 

While the forward algorithm is a filtering process given 

sequence up to current time, the backward algorithm is a 

smoothing process given sequence of full length. Like the 
conventional Kalman smoothing method, the joint-con- 

tinuous state vector and its covariance based on full se-

quence can be smoothed as follows:  
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continuous state vector and its covariance, given that 
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= , collapsing is performed similarly to (4): 
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To complete (10), we turn to derivation of the probabili-

ties of the smoothed joint-discrete states, which is given 
by  
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From (11) the probabilities of the smoothed discrete states 
is obtained as  
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computed from (7) in the forward algorithm. 
 

3. Active Contour Model 

 

To represent a variety of shapes of a hand, it may be an 
efficient way that outlines of the hand are parameterized 

by active contour model using B-spline, which was well 

established in [2]. A curve is parameterized into a control 

vector composed of B-spline control points. A control 
vector is transformed to a low-dimensional shape vector 

on a specific shape space formed with some key control 

vectors called as templates. Then the shape vector is con-

sidered as a state vector in switching linear dynamics. 

 

3.1 Practical Problems 

 

Active contour models such as snakes and deformable 
templates have practical problems in being applied to 

tracking hand gestures. Although the schemes are effec-

tive to retrieve features with geometric structures, they are 

too sensitive to noises to track an object under a compli-
cated background and also have difficulties in progressing 

into boundary concavities which are frequently seen in 

shape-changing hand gestures as shown in figure 2. 

As a solution, there have been dynamic contour meth-
ods conjugating prior dynamic models. A shape vector is 

treated as a continuous state vector in dynamic models. 

Dynamics can provide a powerful cue in the presence of 

occlusions and measurement noises. Known dynamics 
also enables a contour to progress easily into boundary 

concavities. 

 

Figure 2. Sequential B-spline curve fitting in boundary 

Concavities 

 

When learning dynamic models, it is necessary to pre-
pare training sequences of state vectors. That is essential 

to not only general learning process using the maximum 

likelihood method but also the initial estimation of dy-

namic parameters in EM learning, which is an iterative 
maximum likelihood method. Even though such a se-

quence can be obtained in various ways, there often oc-

curs a problem in the case of shape-changing hand ges-

tures considered here. Generally outlines of a hand have 
gradual changes over time, however shape vectors repre-

senting its outlines often vary abruptly on the shape space 

due to separate parameterizations of outlines of the hand. 

For example, although outlines of the hand show gradual 
changes between them in figure 3, a jump change is found 

on the shape space from the white-colored curve in figure 

4. This often leads to poor learning. Especially in the EM 

learning, initial tracking have to be feasible to some extent 
so that the dynamic model can be improved by iterative 

adjustment of dynamic parameters, however existence of 

abrupt changes between shape vectors may cause that to 

be impossible.  

 

Figure 3. An initially given training sequence of contours  

( 1st ,11th ,15th ,17th ,19th and 20th from left to right); these con-

tours are originated from two differently parameterized contours. 

 



3.2 Regularized Smoothing 
 

In this section we present the regularized smoothing 

method to make a training sequence of shape vectors have 

gradual changes on the shape space but outlines of the 
hand remain invariant with allowable errors. 

Suppose the state in which the index finger and the big 

finger are touching. This state changes to a completely 

different state with the separating fingers only by a small 
motion of the fingers. That is shown in figure 4 illustrat-

ing the first two dimensions of the eigen space represent-

ing the hand shape. The black dots clearly shows this 

jump. 

Given a sequence of shape vectors,{ }o
T

oo
xxx ,,,

21
L , the 

new fitted shape vector at t , 
t
x , is obtained by the fol-

lowing regularized smoothing: 
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where α  is the regularization constant, 
t
r̂  and 

o

t
r  are 

contour points of 
t
x̂  and 

t
x , respectively, and 

2

de-

notes 2
L  norm [2]. The first norm forces the current state 

to be positioned for smooth changes in a local interval 

while the second guarantees that the fitted curve remains 

unchanged. In figure 4 the smoothed sequence of shape 

vectors is shown as the white dots without any jump. 

 
Figure 4. The result of the regularized smoothing: A 

given training sequence with an abrupt jump is smoothed 

after five iterations of the regularized smoothing. 

 

4. Learning via EM 

 

EM algorithm is a general iterative technique for find-

ing maximum likelihood parameter estimates in problems 

where some variables are unobserved [5]. It is natural to 

use EM algorithm for our problem, in which unobserved 

variables are continuous state variables
t
x and discrete 

state variables�
t

m . Assume that the probability density 

for observation sequence is parameterized using 

)|(},,,,,{ λπλ
T

OpQDF Φ= . The log-likelihood is 

given by 
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where 
T

M  and 
T

X  are sequences(of length T) of dis-

crete states and continuous states, respectively. Neal and 

Hinton [14] showed that the auxiliary log-likelihood is 

given by 
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where ),|,( λ
TTT

OXMpp =  and λ  is the parameter 

set estimated previously. From figure 1 the joint probabil-

ity for the sequences of states 
T

M ,
T

X  and observations 

T
O  can be factored as: 
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where 1)( =k
t

ψ  if km
t
= , otherwise 0 . Based on the 

collapsing method in the presented switching linear 

model, then L  can be approximately represented as the 

followings, up to constants: 
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η  and d  is dimension 

of state vectors. EM algorithm starts with some initial 

guess and proceeds by applying the following two steps 

repeatedly: 

E-step  On the condition given the observation sequence 
of full length and the previous parameter set 

T
O ,λ , we 

estimate continuous states )(

|
t

m

Tt
x , joint-continuous states 

),(
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1 tt
mm

Tt
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− , and probabilities of joint-discrete states and dis-

crete states, )|,(
1 Ttt

Ommp
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 and )|(
Tt

Omp , respec-

tively. These estimations are performed through the for-

ward and the backward processes described in section 2.1 

and 2.2. 

M-step  If L
~

 is expressed by λ  and the estimations 

from E-step, then we estimate λ  maximizing L
~

.  

 

The above two steps are iterated until the likelihood 
value converges. The likelihood value can be computed by 

(17) given in the following section. 



 
Figure 5. Tracked and recognized hand gestures: Under the complicated background three sets of sequence are 

given, Scissors, Paper and Stone sequences from the top. The black-colored contours are tracking results by the 

model with the smallest AIC value at each time while the gray-colored contours are by the others. 

 

5. Recognition 
 
Recognition of hand gestures can be considered as the 

problem to determine which model tracks a hand gesture 

well. Therefore, a given sequence of hand gestures can be 

recognized by means of the likelihood values of candidate 
models.� As addressed in section 1, our goal is to track 

and recognize hand gestures simultaneously. So we have 

to compute the likelihood of each model while tracking is 

being performed with the forward algorithm. 

The switching linear model can be represented by the 

parameter set λ , which consists of { }Φ,,,, πQDF . The 

likelihood of λ  given an observation sequence can be 

calculated by 
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where 
t

k  has been computed in the forward algorithm. 

At time τ , the goodness of the fit of a model out of the 

candidate models is evaluated by AIC criterion[18]: 

    nLAIC 22 +−=
τ

                      (18) 

where n  is the number of parameters of the model. A 

given sequence of hand gestures can be recognized as the 

model with the minimum AIC . 

 

6. Experimental Results 
 

We have prepared three kinds of shape-changing hand 

gestures, which are called as Paper, Scissors and Stone, 

respectively. First of all, the regularized smoothing was 

applied to each training sequence. After preparing the 

three models by EM learning, we have performed experi-

ments of tracking and recognition. Tracking is performed 

through the forward algorithm with respect to all models. 

At the same time, AIC  for all models are computed by 

(18). Accordingly, an observed sequence can be recog-

nized as the model with the smallest AIC  at each time. 

Figure 5 shows that outlines of the hand are well tracked 

under the complicated background. AIC  values com-

puted during tracking were plotted with respect to all three 

models in figure 6. We might reduce misjudgment in rec-

ognition through watching longer in that the differences in 

AIC  between the correct model and the others increase 

as the frame number increases in figure 6. The three sets 

of hand gestures are modeled to have three discrete states. 

For example, three states of Scissors model correspond to 

initial pause, moving and final pause, respectively. 

Classification of the Scissors sequence into the discrete 

states is illustrated in figure 7. 
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Figure 6. Graphs of AIC vs. frame:  AIC  values are com-

puted and plotted with respect to three models in the case 

that the Paper sequence is given. 
 

 

Figure 7. Classification of Scissors sequence: The black curve 

is for the probability of initial pause state, and the white and 

the dotted are for moving and final pause, respectively. 



7. Conclusion and Discussion 
 

We have presented a framework to track and recognize 

shape-changing gestures simultaneously. To model com-
plex and rich dynamic behaviors of hands we introduced 

switching linear model in which shape vectors, which are 

parameterizations of hand contours by active contour 

model, are considered as state vectors. To overcome ex-
ponential complexity of exact inference in switching lin-

ear model an approximate inference was performed by a 

collapsing method in which some Gaussian distributions 

of state vectors are merged. 
The parameters of the model are estimated via EM al-

gorithm into which the collapsing method is incorporated. 

We also presented a smoothing method using regulariza-

tion for smoothness in training state vectors. Through this 
process, we obtained state vectors shifted in the state 

space while real outlines of the hand remain invariant with 

allowable errors. 

Recognition is performed by selection of a model out 
of some learned models through a criterion using 

log-likelihood values of each model. In some experiments 

we showed that shape-changing hand gestures are recog-

nized and tracked simultaneously using the presented 
scheme. 

However though we achieved satisfactory results in 

tracking under the complicated background, there still re-

mains a problem that the allowable error bound in the ap-
proximate inference is not known, in other words, we 

have no information enough to make sure that the col-

lapsing method can cope with all various backgrounds. As 

an alternative, there are Monte-Carlo-based methods in 
which a number of samples are used to represent the 

probability densities of state vectors[7][11][13]. Although 

this approach is plausible to complex-cluttered back-

grounds, this is often considered not to be feasible for real 
time applications because the exponential number of sam-

ples is required for high dimensional space, which is gen-

eral in shape-changing hand gestures. 
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