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which contains no depth data.

First, given an initial rough shaped 3-D model, pos-
sible pose candidates are generated in a search space
efficiently reduced using silhouette features and motion
prediction. Then, selecting the candidates with high
posterior probabilities, the rough poses are obtained and
the feature correspondence is resolved even under quick
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Next, In order to refine both the 3-D shape model and

the rough pose under the depth ambiguity in monoc- set

ular images, the paper proposes an ambiguity limita-

tion method by loose constraint knowledge of the ob- Qi

ject represented as inequalities. The method calculates O e

the probability distribution satisfying both the observa-
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determined. FEzxperimental results show that the depth

ambiguity is incrementally reduced if the informative

observations are obtained.
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Hand is the most functional part of human body:
pointing, handling, or expressing some symbols etc. In

order to recognize automatically these variety of hand of the solution set: [: obser-

vations and F': constraints

function, it is important to capture the precise hand
gesture. Many methods precisely estimating human
gestures have been developed in recent years. Some of
them estimate by fitting a 3-D model to images based
on feature correspondence [2][11][14]. Since the human
gestures change quickly and cause self-occlusion in the
images, it is difficult to resolve the correspondence in
a real hand motion. Under those situations, the es-
timation by synthesis can determine the gestures by
generating the possible pose candidates using the 3-D
model [6][7][9]. The search space is however so huge
due to a high DOF of a human body that it should be
roughly quantized to reduce the computation cost. In
addition, there are approximation errors in the initial
shape of the model since it is difficult to prepare an
exact shape model in advance. For these reasons, the
estimated poses are quite rough.

The more precise estimate can be obtained by re-
fining both the roughly estimated pose and the initial
shape model. Given the rough estimate, the feature
correspondence is so easily resolved that the model can
be fitted to the image by least squares method. These

1 This work is supported in part by Grant-in-Aid for Scien-
tific Research from Ministry of Education, Science, Sports, and
Culture, Japanese Government.

methods however don’t work well for the monocular
images due to depth ambiguity. For example in a case

shown by Fig.1 where a stick object is projected as a
line, there is the ambiguity between the length and the
joint angle. Even by multiple cameras [11], the ambi-

guity still remains if a certain part is visible from only
one ‘camera. o o )
Some methods try to limit the ambiguity using con-

straint knowledge of the objects in monocular setting.
Effectiveness of the constraints are shown in Fig.1: sup-
posing the joint angle is constrained within a certain
range then the length is limited between the maxi-

um achieved at the candidate ’C’ and the minimum
at 'D’. In [1][10], the ambiguity is handled by inter-

vals represented as the maxima and the minima of the
parameters. In this manner, the ambiguity isn’t suf-
ficiently limited because the correlations between the
parameters are not considered. (see the square region
in Fig.2)

In our method, given an initial approximately
shaped 3-D model, rough pose estimate (a position,
a orientation and joint angles) is first obtained by esti-
mation by synthesis. Next, both the roughly estimated
pose and the shape (lengths and widths of the parts)



are simultaneously refined by representing the parame-
ter ambiguity as a covariance ellipsoid of a probability
distribution in the multi-dimensional parameter space
(see Fig.2) and then limiting the ambiguity ellipsoid
using the constraint knowledge.

The our ambiguity-limiting process is shown in
Fig.3. It is same as normal filtering method except
the constraining phase inserted between the prediction
and observation phase. In order to deal with inequal-
ity constraints such as —20 < 6 < 40, a novel method
is proposed which modifies the probability distribution
by truncating the probability of a part where the in-
equalities are not satisfied. Then the ambiguity ellip-
soid is incrementally limited, namely the shape and
pose get precise, by various observations over the se-
quence. Since the correlations between the parameters
are considered by the co-variance, the ambiguity is suf-
ficiently limited (see the broken contour in Fig.2).

In the following sections, the rough estimation pro-
cess is first explained and then the details of the refine-
ment process and experimental results follow.

2 Rough Estimation by Silhouette
Matching

(a) Input image (b) Extracted feature

Figure 5. Feature extraction

Our method uses an object model in Fig.4 to esti-
mate the shape and pose. Its shape and pose are repre-
sented as a wrist position, palm direction, 3-D shapes
of the parts, joint angles and scale of the projection. In
the rough estimation, the wrist position and the joint
angles are estimated by fixed shape. We briefly explain
that process here (refer [13] for details).

At each frame, the following preprocesses precede.
As a wrist position, we extract a point in a silhouette
image where the width of the arm abruptly changes.
In the same way, silhouette features like fingers are
extracted (Fig.5).

Next we search for the candidates well-matching to
the silhouette. The matching of the hand pose consists
of two phases: generating appearance candidates from
the model and evaluating their degrees of matching to

the silhouette. For reduction of the total number of
generated candidates we utilize the following tactics:

1. hierarchical estimation from the palm to fingers

2. adaptive quantization of the parameter space con-
sidering the degree of image deformation for the
variation of each parameter

3. limitation of the search space using silhouette fea-
tures

4. search strategy considering the prior probability
P, (0) based on motion smoothness (€ denotes an
appearance candidate).
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(a) Palm candidate (b) Finger candidate
Figure 6. Evaluation of candidates

Because candidates with higher probabilities are earlier
tested, a well-matching candidate can be found in a

short time. . .
In evaluation phase, a mean protrusion length is

evaluated for the generated palm pose as matching de-
gree (Fig.6(a) ). For the finger pose, the projected dif-
ference is evaluated between the axes of the model fin-
gers and the pre-extracted silhouette features (Fig.6(b)
). If any of the above matching degrees are larger than
thresholds, such a candidate is rejected. For the rest,
these different types of evaluation are integrated. We
suppose the likelihood distribution of the matching de-
grees considering errors of the shape modeling and the
quantization of the parameters. Then, the matching
degrees of respective parts are integrated by Bayes rule:

Py(0;) 1, P(znl0)) 1)
>, [P(0;) 1, P(zn|0;)]

where 0; and © = {z,} respectively denote the jth
well-matching candidate and the set vector of the
matching degrees.

Still, the best candidate at one frame is some-
times wrong when the later observations are consid-
ered. There are various causes: model approxima-
tion errors, too rapidly motion changes or ambiguities
caused by occlusion. To resolve this problem, we utilize
one more tactics:

P(6;]z) =

4. preserving multiple estimates at one frame by
beam-search [8].

A fixed number of candidates are preserved at one
frame. Even if the best estimate is actually wrong, the
following estimation can be continued based on the rest
estimates without back-tracking. If you wish, the glob-
ally optimal solutions are obtained over a long sequence
with back-tracking. The rough estimation results for a
certain sequence is shown in Fig.7.

3 Refinement of Shape and Pose Pa-
rameters

Next we refine both the shape and pose using results
of the rough pose estimation. In order to resolve the
depth ambiguity, we consider the following constraint
knowledge of the shape and pose of an articulated ob-
ject.

(a) shape parameters (lengths and widths) are con-
stant over the sequence.

(b) pose parameters (joint angles) change continu-
ously.
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(c) each parameter is within a certain range and has
relations with the other parameters.

we describe details in use of the above constraints in
following sections.

3.1 Modeling of Articulated Object

Here, we consider the object (Fig.4) is observed
by scaled orthogonal projection. We define an m-
dimensional state vector of the shape and pose as

= (tTasawTagloa"' ,953,7“11,"‘,7“53)T
_ (2)
where ¢, s, w, 8, 6, and r respectively denote a wrist
position (t;,t,), scale of the projection, 3-D direction
of palm, joint angles, its velocities and lengths of links.
Supposing the constancy of the shape ((a) in Sec.3), 7 is
not included. The transition and observation formulas
are represented as

Ty = Az t+ug (3)

Yy, = h(z) +w; (4)

where y, is an n-dimensional observation vector. wy,
w; are white noises with zero mean and variances U,
W . Supposing linear prediction, A is represented as
the following (2m + n) x (2m + n) matrix:

705370107 T

I, I, O
A=| O I, O (5)
O O 1I
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Figure.9 Truncation

where I, denotes m x m identity matrix. U is deter-
mined by considering the continuity of the pose changes
((b) in Sec.3).

The observation formula of the wrist and joint po-
sition and the finger axes is next modeled in detail. In
Fig.8, the 2-D projection of the jth joint position of
ith finger is described as

(@ ()

Pij (ng ) Pij ) =L- R(w)R(glO) :

J k T
Zrik (cos(z (‘)il),sin(z Gil),0> +t (6)
k=1 =1 =1

where L and R represent projection and rotation ma-
trices. We suppose a straight line («;j,p;5) is extracted
as the jth axis of ith finger. «;; and p;; respectively

denote the direction of the line and the distance from
the origin. They are formulated as

a;; = arctan(z (9)/2(?)) (7)
g = G =R 12l ®)
zg = (=)
_ { D;j — Dij - j#0 (9)
Pij; =0

The observation function h consists of the p;;, aij, pij
observed in one frame. In case of occlusion, p;;, a;j,
pi; of the occluded part are not contained in h. For
example, if we obtain the wrist, finger tips and the all

of the finger axes except the most proximal one, h is
described as

h(z) = (t", a2, p12, 13, p13, Pi3, s
a52,p52,a53,p53,p5Tg)T- (10)

In addition to above, the following constraints of the

object is considered ((c) in Sec.3). They are formulated
as

Tmin,i <z; < Tmazx,i (11)
|zi — z;] < Azyy (12)

The above inequalities must be simultaneously satis-
fied.

3.2 Distribution Truncation with Inequal-
ity Constraints

Because the observation function h is non-linear, the
current state ; and variance P, are approximately
estimated by extended Kalman filter (EKF) as

v, = z+ Ky, —h(z))} (13)
oh

P, = (I-K,-—| AP, 1A" +U) (14)
8mt T,

where K is the Kalman gain matrix, &; = A®;—1. In
the calculation of Oh/dx:, Op/Oz; is directly obtained
from the derivatives of Eq.(6). da/0x; and 0p/dx; are
also obtained from the derivatives of Eq.(7) and (8)
which are reduced to Op/dx;. However, the solution



of Eq.(13) includes errors due to the depth ambiguity.

In order to resolve the ambiguity, we introduce the
model constraints Eq.(11)-(12) into EKF. If they are
equations, they can be treated as an observation with
a Zero variance. Here, they are however inequalities.
Although a method is proposed in which inequality
constraints are modified to quadratic equations with
slack variables and linearized [4], the linearized con-
straints are quite different from original ones. Another
way is to introduce the constraints as an initial distri-
bution. But it is also inappropriate because the effect
of the initial distribution decreases by filtering at every
frame.

In our method, the inequality constrants are inte-
grated as follows. First the mean and variance of pre-
diction (&;, P;) which are made by normal EKF way
is truncated outside the constraints as shown in Fig.9.
Then the observation is integrated to the truncated
prediction by Eqgs.(13)(14).

Eqs.(11)-(12) are generally represented as

(k=1--K). (15)

Because of difficulty to exactly compute the distribu-
tion truncated with all constraints, it is approximated
by sequential truncation with an each single constraint.

Suppose the distribution with a mean g,_; and a
variance Q,_, is truncated by the constraint ¢}z <
bg, where g, = @; and Q, = Pj;. This compu-
tation is reduced to the case where the mean is 0,
the variance is identity matrix I and the constraint is
(1,0,---,0)T2’ < ¢, by applying the following trans-
formation:

orx < by

2’ =RW T (z —q,_,) (16)

where R, T is orthogonal, W is diagonal and
TWI" = Q,, (17)
RWIT o = ((pfQu191),0,--,07  (18)
(n = eE @)/ (9F Quorion) T19)

In this case, the truncated mean pu, and variance Sy,
is computed as

Kr = (l/k,O,---,O)T (20)

C, =

Sy = diag{l+cpvp —vi,1,-+,1} (21)
o= 2oy rarts) @

where erf(-) represents the error function and
diag{a,b,- - -} represents a diagonal matrix whose di-

agonal elements are a, b, - - -. Then the truncated mean
and variance are expressed as
1
@ = TWiR p, +q, (23)
Q. = TW>RTS,RW>T". (24)

Finally, the fully truncated mean and variance are ob-
tained by recursive computation: &; = g and P; =
Q- Because the computation of Eq.(17) takes much
time, the kth truncation is skipped for efficiency if ¢y,

mahalanobis distance from g, to the plane ¢} x = by,
is greater than a threshold.

3.3 Multiple Estimation

Estimation by EKF may fail because the distribu-
tion becomes multimodal due to the depth ambigu-
ity. Fig.10 shows an example of a 2-D link system in
which 1-D joint positions are observed. At the 18th
frame(Fig.10(b)), In spite that there are two possible
solution (see (e)), normal EKF only produces either.
The sampling method [5] can treat the multimodal
case. However, it should generate a number of sam-
ples for one dimension. That makes the method hard
to apply to high dimensional cases like articulated ob-
jects.

In our method, we generate and preserve multiple es-

timates. This means that the multimodal distribution
is approximated by sum of multiple gaussian distribu-

tions. For the ith link, the multimodal problem arises
when the link is nearly parallel to the screen, namely
when 0h;/00;|z, ~ 0, where h; and §; respectively de-
note observations of the ith link and the proximal joint
angle. If the prediction #; satisfies above equation, the
following processes are activated.

1. Generate the Z;Y" which is identical to &;, ex-

cept that the ith link is symmetrical to &; with
respect to the screen.

2. At both of Z; and z;Y™, calculate Oh/dx; in
Eq.(14)

3. With each Oh/0x;, calculate the estimate by
modified EKF respectively with the original pre-
diction Z; and its variance.

At most, 2" (n:the number of links) estimates are pos-
sible. In case that the area truncated by the constraints
is more than a threshold, such a estimates is eliminated
as illegal. The rest are also preserved for robustness in
the same way of the rough estimation. Only a certain
number of candidates with high probabilities (Eq.(1))
are preserved until unique solution is determined by

Beam search. . .
In Fig.10, two estimates are simultaneously gener-

ated at the 18th frame (e) and the wrong estimate is
eliminated at the 20th frame (f) and the following es-
timation is successfully continued.

4 Experimental Results

We first show an estimation result by a simulation
with a synthesized image sequence (Fig.11). In the
sequence, a hand-like object moves to right and left,
rotates, and folds its fingers. We utilize the constraints
shown in Tab.1. The initial estimate and variance is set
so that the correct value is included in 99% confidence
region.

In Fig.11, (a)-(c) show correct shapes and poses and
(d)-(f) show the estimates. Observed wrist positions,
finger tips and finger axes perturbed by Gaussian noise
are shown by the black spheres and straight lines in



Table 1. The constraints used in the simulation

pose constraints |6i2 — 03| < 10deg,
—20deg < 610 < Odeg,
Odeg < 059 < 20deg,

0 S gij S 90deg

|011 — 021| S 35d€g

for i = {1,2}, j = {1,2,3}

shape constraints | 0 < r;; — rj < 30,
|12 — riz] < 10,
35 S Ti1 S 705
30 < i <50,
25 S i3 S 50
for i = {1,2}

- T
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(a) t=16/correct (b) t=18/correct (c¢) t=20/correct

+

g
(d) t=16/estimate  (e) t=18/estimate  (f) t=20/estimate
Figure 10. Multiple estimation: In (e), solid line
shows the wrong estimate obtained by normal

EKF and broken line shows the alternative es-
timate.

(d)-(f). Although the hand poses are wrongly esti-
mated without constraints due to the depth ambigu-
ity (Fig.12(b),(e)), our method correctly estimates the
pose with the constraints in the Tab.1 (Fig.12(c),(f)).

The correct and estimated parameters (scale,a joint
angle and a finger length) are plotted in Fig.14-16, in
which the solid lines, small circles and the vertical lines
respectively show the correct values, estimated mean
and a twice of standard deviations. The joint angles
are well-estimated and the possible range of the finger
lengths (r;;) are correctly limited. Fig.13 shows that
two different shapes (b) and (c) are correctly identified
using the same initial shape shown in (a) and the same

constraints. . .
. e next show an estimation result for the real hand
images. In this experiment, only finger lengths are es-

timated as the shape. Fig.17 shows the refined pose
estimates for the rough estimates shown in Fig.7. Be-
fore the refinement process, the image features are seg-
mented into each part of fingers using the rough estima-
tion result, and the observation a and p are calculated
by line fitting to the segmented features. (Fig.17(a)-
(c)). Then the pose estimates are refined ((d)-(f)). The
refinement result of the shape model is shown in Fig.18.

5 Conclusion and Discussion

In this paper, we propose a method to simultane-
ously estimate the shape and pose of a human hand
from a monocular image sequence. First, the pose
is roughly estimated by silhouette matching. Various
candidates are generated and matched to an input sil-

(a) t=1/correct (b) t=32/correct

(d) t=1/estimate (e) t=32/estimate  (f) t=55/estimate

Figure.11 Estimation results by simulation

(b) without con-

. (c) with constraints
straints

(a) correct pose

(d) another view of (e) another view of (f) another view of
(a) (b) (c)

Figure.12 Comparison of estimates with / without
constraints (t=23)

houette. The search space is efficiently reduced using
the silhouette features and motion prediction. The pos-
terior probabilities of the candidates are evaluated in
order to integrate the prior probabilities and the likeli-
hoods of different sorts of the matching degrees. Next,
we refine the rough pose and the initial shape model us-
ing the modified EKF with distribution truncation by
inequality constraints. Then the depth ambiguity is in-
crementally limited with informative observations over
the sequence. In addition, we resolve the ambiguity of
symmetrical poses by generating and preserving multi-
ple solutions. We show the effectiveness of our method
by simulation and an application to a real hand im-
ages. This method is applicable to gesture estimation
and model acquisition of other articulated objects.

However, we still have a problem. In some cases, the
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Figure 13. The result of shape refinement (sim-
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Figure 17. Shape and pose estimation result
from real images

variance of the estimate improperly decreases. This
is caused by the error of linearization of the observa-
tion. One way to solve this problem is to use a bound-
ary description instead of the probability distribution.
In general, however, the computation of the bound-
ary in multi-dimensional space is almost impossible.
An approximation method was proposed [3][12] which
approximate the boundary by an ellipse in a multi-
dimensional space and updates the ellipse with each
observation iteratively. There remains for the future
works to apply that method to our problem and to es-
timate not only lengths and widths but also shape of
surfaces.
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