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Abstract

This paper presents a method of estimating both 3-D shapes and moving poses of an ar-
ticulated object from a monocular image sequence. Instead of using direct depth data,
prior loose knowledge about the object, such as possible ranges of joint angles, lengths
or widths of parts, and some relationships between them, are referred as system con-
straints. This paper first points out that the estimate by Kalman filter essentially con-
verge to a wrong state for non-linear unobservable systems. Thus the paper proposes
an alternative method based on a set-membership-based estimation including dynam-
ics. The method limits the depth ambiguity by considering loose constraint knowledge
represented as inequalities and provides the shape recovery of articulated objects. Ef-
fectiveness of the framework is shown by experiments.

1 Introduction

In general, the 3-D shape of a non-rigid object cannot be recovered with only one cam-
era even if an image sequence is given. For a certain class of objects like human bodies,
however, depth information can be recovered from a monocular camera data if ade-
quate prior knowledge about the shape and structure is available. For example, we can
build a structure model of a human body by assuming that its joint motions are related
with each other and there are rough correlations between the sizes of body parts. Given
such constraints, depth estimation can be broken down into a least squares problem
[1][2]. Particularly, Kalman filter and its variation for non-linear systems (Extended
Kalman filter) are considered to give estimates with good accuracy and popularly ap-
plied to estimate an object’s shape or pose parameters. If the constraints are rough to
be represented by inequalities, this method cannot be applied because the original EKF
cannot deal with the inequalities. Shimada et.al [3] recovered the joint angles and the
finger lengths from a monocular image sequence using an EKF variation handling the
inequalities by distribution truncation.

In addition, Kalman filter has an essential problem. Although it can give correct esti-
mates only for linear systems and non-linear observable systems, its estimate converges
to a wrong state due to approximation error in linearization for non-linear unobserv-
able systems. As an alternative way, the paper proposes an estimation method based on
set-membership estimation. In EKF, the ambiguity of the estimate is described by the
estimate covariance In the set-membership methods, a possible parameter set described
by its boundary is used for representing the estimate ambiguity, which is represented by
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the estimate covariance in EKF. In this paper, the combination of the ellipsoidal descrip-
tion[4][5] and a rectangular description is proposed. In order to estimate time-varying
parameters, the proposed framework introduces an updating scheme by dynamics. Since
this method does not calculates probabilistic integration but an intersection set of possi-
ble parameters, it can provide more accurate estimation than EKF because it can avoid
the accumulation of linearization error. For this ability, loose constraint knowledge such
as possible ranges of lengths, widths or joint angles are available to estimate the shape
and pose of articulated objects. While the set-membership-based approach has these
merits, it is well-known that it has a drawback of the weakness against outliers. Here
we concentrate on describing the integration scheme at each time-frame supposing the
existence of a outlier rejection method.

In the following sections, the basic idea is first explained and the details are de-
scribed later. Finally effectiveness of the method is shown by estimation results for an
articulated object.

2 Basic Idea

Although monocular imaging systems have unobservability of depth in shape estima-
tion of non-rigid objects, they can estimate depth information if prior knowledge is
additionally available. For example, we can recover a human body by approximating
it as an articulated object which consists of rigid body parts linked each other and by
assuming the following constraints.

(a) Shape parameters (lengths and widths) are constant over an image sequence.
(b) Pose parameters (joint angles and orientation) change continuously.
(c) Each parameter is within a certain range and has relations with other parameters.

Note that these constraints include not only equations but also loose constraints de-
scribed as inequalities.

Fig. 1 summarizes the basic idea of parameter estimation with these constraints un-
der “unobservable” systems1. A vector space of parameters describing shape and pose is
first considered and an initial possible parameter set Ωt−1 is supposed. Then a predicted

1 The term “unobservability” is used in the control theory. It means that there are states which
cannot be discriminated by any observation sequences.



set Ω̃t is generated by shifting and diffusing the initial set based on the object’s dynam-
ics and its noise. When an observation data is obtained from each image, a parameter
set H̄ satisfying the observation is considered. Another set F̄ satisfying the constraint
knowledge is considered as well. Then the updated possible parameter set Ωt is ob-
tained as an intersection of the three parameter sets. This process is repeated for each
image observation. The important point is that the constraint knowledge has an effect
to limit unobservable modes as illustrated in Fig. 2. Until the parameter set intersects
with any boundary of the constraints, the system is still unobservable and the ambiguity
remains. Once it intersects with a constraint boundary, however, the possible parameter
set is limited to only the inside of the boundary. If any parameters are supposed to be
constant, such as lengths or widths of rigid parts, the ranges of these parameters should
monotonously decrease. As the result of iterative intersection with boundaries during
sequential observations, ranges of any parameters including unobservable modes can
be limited.

3 Limit of EKF Estimation

3.1 Non-linear Unobservable System

The idea described in the previous section is naturally implemented in a state estimation
framework of Kalman filter or its non-linear version (Extended Kalman filter, EKF).
Shimada et al. utilized EKF to implement the idea [3].

Suppose the transition and observation formulas of a system represented as

xt+1 = Axt + But (1)
yt = h(xt) + wt (2)

where yt is an observation vector. ut and wt are white noises with zero mean and
variances U , W . The components of U for time-invariant shape parameters are zeros.
If the observation function h(·) is non-linear, the current state x̂t and variance P t are
approximately estimated by EKF:

x̂t = x̃t + Kt{yt − h(x̃t)} (3)

P t = (I − Kth
0(x̃t))(AP t−1A

T + BUBT ) (4)

where Kt is a Kalman gain matrix and x̃t = Ax̂t−1.
EKF is recognized as the estimator to achieve good accuracy. It is correct for linear

KF, but not for EKF. Actually the EKF estimate for non-linear unobservable systems
essentially converges to a wrong state under a certain condition. Fig. 3 illustrates the
reason. In linear systems, the direction of a hyper-plane satisfying a certain observation
y is invariant. Therefore the co-variance ellipsoid decreases only in the observable di-
rections and ambiguity of unobservable modes is properly preserved. In contrast, the
direction of the hyper-plane depends on the linearizing point in non-linear systems.
Therefore the variance ellipsoid is destined to shrink in any directions even if the sys-
tem is actually unobservable. When all parameters are time-varying, this is not a serious
problem because the erroneous shrinkage is swallowed up by the variance increase in
any directions at each time step due to the system transition noise. However, it is fa-
tal for systems including time-invariant parameters such as a length or width of rigid
objects. When constant observations only perturbed by noise are obtained, the EKF es-
timate converges into a wrong state as shown in Fig. 4. The vertical bars mean the range
of 2 standard deviation. Once the wrong conversion occurs, the estimate is difficult to
modify due to too small variance even if observations containing new information are
obtained. Then tracking fails as a result. Fig. 5 shows such a failure example for a 3-link
arm in 2-D in which the black circle denotes the fixed origin of the arm and the open
circles corresponds to the link-joints or the most proximal tip of the arm.
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3.2 Inequality Constraints

The constraints (b) and (c) introduced in section 2 include loose constraints represented
as inequalities. Although the equation constraints can be treated as an observation with a
zero variance in the EKF framework, inequalities cannot be dealt in such a simple way.
Hel-Or el.al[6] modified the inequality constraints to quadratic equations with slack
variables to linearize them. The linearized constraints, however, are quite different from
the original ones. Another way is to introduce the constraints as an initial distribution.
It is also inappropriate because the effect of the initial distribution decreases at every
frame.

4 Possibility Reduction based on Set-membership

4.1 Ellipsoidal Boundary Description

The set-membership methods are known as a way to estimate an unknown system pa-
rameters from a sequence of input signals and the corresponding output of the system
under bounded signal errors. The methods represent a possible parameter set as inter-
vals of each parameter[7], a polygon[8] or an ellipsoid[4] in a high-dimensional vector
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space. Fogel et al.[5] formulated a set updating with an ellipsoidal initial set and a linear
observation with bounded noise.

Suppose an initial ellipsoid Ω̂t described as

(xt − qt)
T P−1

t (xt − qt) ≤ 1 (5)

and a parameter set H̄ satisfying a noise-bounded observation as

|mT
i xt − ρi| ≤ ci. (6)

The latter means the region between two hyper-planes. A parameter set F̄ satisfying an
inequality constraint is described as well. A certain ellipsoid Ω̂t+1 covering whole the
intersection set Ωt+1 between Ω̂t and H̄(F̄ ) (see Fig. 6) can be represented with λ ≥ 0
as

(xt − qt)
T P−1

t (xt − qt) + λ(mT
i xt − ρi)2 ≤ 1 + λc2

i . (7)

which can be reformed to the form of Eq. 5. Using a criterion minimizing trP t+1, λ
achieving the smallest ellipsoid is the real root of

β1λ
3 + β2λ

2 + β3λ + β4 = 0 (8)

where

β1 = G2c2
i (µG − γ),



β2 = 3Gc2
i (µG − γ),

β3 = Gµ(3c2
i − ε2) − γ{2(c2

i − ε) + G},
β4 = µ(c2

i − ε2) − γ,

µ = trP t,

γ = mT
i P 2

t mi,

G = mT
i P tmi,

ε = ρi − mT
i qt. (9)

It can be proved that Eq. 8 always has one real root and two imaginary roots. In addition,
if the real root is negative, the minimal trP t+1 in the domain of λ ≥ 0 is achieved at
λ = 0 (the details of the proof are described in [5]). Finally, the updated ellipsoid is
described in the form of Eq. 5 by

qt+1 = qt + λY miε,

P t+1 = zY (10)

where

Y = P t − λ
P tmim

T
i P T

t

1 + λG
,

z = 1 + λc2
i −

λε2

1 + λG
. (11)

Since this method does not calculate a probability variance but a boundary of the inter-
section, the parameter set should keep its size even if almost the same observations are
repeatedly obtained.

4.2 Extension to Dynamic Systems

Most conventional set-membership methods contained no dynamic mechanism[9] or
treated dynamics for low dimensional systems using a simple interval description[7].
While update by dynamics can be easily introduced into such interval descriptions, it is
unable to represent correlations between each parameter. In addition, the set description
is inaccurate. The ellipsoidal set-membership can be easily updated in high dimensional
systems and has the ability to describe correlations. Thus we introduce a dynamics and
prediction phase into the ellipsoid-based method.

Suppose a dynamics of the system is given as Eq. 1 and the system noise ut is
bounded as

uT
t U−1ut ≤ 1. (12)

In the (xt, ut) space, a certain ellipsoid including all of the parameters satisfying Eqs. 5
and 12 can be represented as

(xt − qt)
T P−1

t (xt − qt) + λuT
t U−1ut ≤ 1 + λ (13)

where λ ≥ 0. Combining this and Eq.1,

qt+1 = Aqt (14)

P t+1 = (1 + λ)AP tA
T + (1 +

1
λ

)BUBT (15)



is obtained. See Appendix for details. Here, using a criterion which minimizing trP t+1,
the smallest ellipsoid is given by

λ =

√
tr(BUBT)
tr(AP tA

T)
. (16)

After this predictional update, the observations and constraints are integrated in the way
described in section 4.1.

4.3 Maximum and Minimum Bounds

In updating by Eq. 11, the parameter set can be represented as an small ellipsoid if ci

is small enough compared to the size of the original ellipsoid. Otherwise, the updated
ellipsoid tends to include a large region outside the true intersection Ωt. Fogel et al.[5]
added a pre-process: when any of the two hyper-plane boundaries of Eq. 6 does not
intersect with the ellipsoid to update, ρi and ci are modified so that the non-intersecting
hyper-plane is tangent to the ellipsoid. However, if the ellipsoid to update highly sticks
out of the hyper-plane boundary, the new ellipsoid simply updated by Eq. 11 is almost
the same as the original ellipsoid.

In our method, the maximum and minimum values of each component of x are
calculated by controlling λ in Eq. 7. The maximum and minimum in direction n(|n| =
1) are obtained by substituting a new criterion minimizing nT P t+1n for minimizing
trP t+1. λ achieving that criterion is obtained by solving Eq. 8 where

β1 = G2ci(GK − L2)
β2 = 3Gc2

i (GK − L2)
β3 = GK(3c2

i − e2) + L2(2e2 − 2c2
i − G)

β4 = (c2
i − e2)K − L2

K = nT P tn

L = mT
i P tmi. (17)

The maximum x
(t)
max and minimum x

(t)
min are obtained by

xmin(n) = nT s −
√

nT Qn (18)

xmax(n) = nT s +
√

nT Qn (19)
s = qt + λY miε (20)

Q = zY (21)

where z and Y are given by Eq. 11. If xmax and xmin for any n can be calculated, a
convex hull of the true intersection set Ωt+1 is obtained. Since systems for articulated
objects have much high dimensions, each coordinate axis of the parameter space is used
as a representative. Whenever an observation is obtained and the ellipsoid is updated in
time t, x

(t)
min and x

(t)
max for each parameter are calculated and then max (x(t)

min, x
(t−1)
min )

and min(x(t)
max, x

(t−1)
max ) are preserved. At the final stage of each update, a constraint

in the form of Eq. 6 is made from x
(t)
min and x

(t)
max and the ellipsoid is updated by the

constraint in the way of Eq. 11.
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4.4 Compensation for Non-linearity of Bounds

In the previous section, we summarize our set-membership-based estimation supposing
the observation and constraint formulas are linear as Eq. 6. Since they are actually
highly non-linear like Eq. 2, they need to be approximated as a linear form:

yt = h0(x̃t)(xt − x̃t) + h(x̃t) + wt. (22)

Since this approximation includes linearization error, ρ and c should be determined so
that the parameter set satisfying Eq. 6 includes one satisfying both Eq. 22 and noise
bound

wtW
−1wt ≤ 1. (23)

First a linearizing point is found by iterative solving of Eq. 22 with an initial solution x̃t.
Then Eq. 2 is linearized and decomposed into each component yi. The decomposed h′

i
is determined as mi in Eq. 6. Next hi is sampled in the predicted ellipsoid and checked
whether wi = hi − yi is within its bounds of Eq. 23. ρi and ci are determined from
the passed samples as shown in Fig 7(a) . If the passed samples are divided in some
divisions like in Fig 7(b) , linearization and sampling are started again for each divi-
sion and then multiple segmented bounds are obtained. In such cases, multiple updated
ellipsoids are generated. Each corresponds to a candidate of interpretation.

5 Experimental Result

5.1 Experimental Setup

We have performed computer simulation experiments to prove the validity of the method.
For simplicity, we use a 2-D link object as in Fig. 8 to estimate its lengths r and joint
angles θ. It has a three joints rotating in a x − y plane and its dynamics is unknown
– transition matrix A is assumed to be identity. However, all joint angles and the dif-
ferences between the most proximal joint angle and the second proximal one are con-
strained within a certain range. Possible ranges of the link lengths are also assumed. As
an observation system, only 1-D position x for each joint is observed and the depth y is
not available. The transition and observation noise is supposed to be bounded.
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Table 1. Object constraints (tight set)

pose constraints |θ2 − θ3| ≤ π/6rad,
0rad ≤ θ2, θ3 ≤
π/2rad,

shape constraints 0 ≤ r1 − r2 ≤ 15,
|r2 − r3| ≤ 15,
65 ≤ r1 ≤ 90,
50 ≤ r2 ≤ 75,
45 ≤ r3 ≤ 65

Table 2. Object constraints (loose set)

pose constraints |θ2 − θ3| ≤ π/6rad,
0rad ≤ θ2, θ3 ≤
π/2rad,

shape constraints 0 ≤ r1 − r2 ≤ 30,
|r2 − r3| ≤ 30,
52.5 ≤ r1 ≤ 102.5,
37.5 ≤ r2 ≤ 87.5,
20 ≤ r3 ≤ 80

5.2 Result of Shape Recovery and Accuracy

In order to verify the estimation accuracy, we show estimation results for the link object.
First, the tight constraint set shown in Tab. 1 is applied. The result is shown in Fig. 10
and 11. Then another constraint set shown in Tab. 2 twice times looser than Tab. 1 is
applied. The result is shown in Fig. 12. With the tight constraints, the estimated range of
r (shown by each vertical bar) is getting small in early time. With the loose constraints in
contrast, the range is getting small more slowly but finally converges to the correct value
(shown by a straight line). The final range is almost the same as the tight constraints.
In Fig. 10, there are cases that more than one estimates (shown as circles) are obtained.
This means that there are multiple symmetric interpretations due to depth ambiguity
(see Figs. 9(d)-(f)).

5.3 Dependency on Initial Estimate

Next, in order to verify dependency of the estimate on initial estimates, we show es-
timation results for the same observation sequence starting from two different initial
estimates in Figs. 11 and 13. Regardless of initial estimates, each shape estimate of r1

finally converges to almost the same correct value. This means that there is no remark-
able dependency on initial estimates.
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5.4 Identification of Different Shape

In order to verify the ability to identify different shapes, we show estimation results for
two objects whose link lengths differ from each other. The estimation for each object
starts from the same initial estimate and with the same constraint set. As the experi-
mental result, Fig. 14 shows the correct, initial, and finally estimated objects extending
all joints in order to compare lengths of the corresponding links. Concludingly, Fig. 14
tells that all link lengths appropriately converge to the correct values for both objects.
This means that the system correctly identified the two different shapes.

6 Conclusion and Discussion

This paper has proposed a method which simultaneously estimates a 3-D shape and
moving pose of an articulated object from a monocular image sequence.

This paper pointed out a Kalman filter estimate essentially converges to wrong state
for non-linear unobservable systems. For an alternative, the paper has proposed a set-
membership-based method including dynamics. The method limits the depth ambiguity
by considering inequality constraints such as possible ranges of joint angles, lengths or
widths of parts. Using these constraints, it provides shape recovery of articulated ob-
jects under monocular systems. Effectiveness of the framework has been shown by es-
timation results for an articulated object. Although the system shown in the experiment
section adopts an only two-dimensional link object whose joint points can be observed,
the proposed method can be applied to cases of three-dimensional objects. The method
can use any other observations such as object axes or contours extracted by edge detec-
tion or active contour method. A weak point of set-membership methods is an outlier
problem. Since bounded noises are supposed, the intersection set may become empty
by an outlier noise over the pre-estimated noise bounds. It is a future work to detect and
remove outliers.
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Appendix: Predictive Update by Dynamics

Here, define a vector zt as

zt = ((xt − qt)
T , uT

t )T . (24)

With the above equation and Eq. 13, the following relation

zT
t Qzt ≤ 1 where Q =

(
(1 + λ)P t O

O (1 + 1
λ )U

)−1

(25)

is derived and Eqs. 1 and 24 conclude

xt+1 = A(xt − qt) + But + Aqt = (A B)zt + Aqt. (26)

In general, the following relations

zT Q−1z ≤ 1, x = Cz + d (27)
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yield
(x − d)T (CQCT )−1(x − d) ≤ 1 (28)

if m ≤ n and rank C equals to m where C is a m times n matrix (this condition means
that {Cz} spans a linear space of m dimensions). Therefore Eq. 13 is rewritten as the
form of Eq. 5 and the followings are derived by substituting C = (A B), d = Aqt
and x = xt+1 into Eq. 28:

(xt+1 − Aqt)
T

{
(1 + λ)AP tA

T +
(

1 +
1
λ

)
BUBT

}
(xt+1 − Aqt) ≤ 1.(29)

By comparison of Eq. 29 with Eq.5, Eqs. 14 and 15 are derived.
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