
ACCV2002: The 5th Asian Conference on Computer Vision, 23--25 January 2002, Melbourne, Australia 

 1

Complex Gesture Recognition using Coupled Switching Linear Model 
 

Mun Ho Jeong 
Dept. Computer-Controlled 
Mech. Systems, Osaka Univ. 

mhjeong@cv.mech.eng.osaka-
u.ac.jp 

 
 

Yoshinori Kuno 
Dept. Information and Com-
puter Sciences, Saitama Univ. 

kuno@cv.ics.saitama-u.ac.jp 
 
 
 

Nobutaka Shimada, 
Yoshiaki Shirai 

Dept. Computer-Controlled 
Mech. Systems, Osaka Univ. 

shimada@mech.eng.osaka-u.ac.jp 
shirai@mech.eng.osaka-u.ac.jp 

Abstract 
 

We present a method coupling multiple switching 
linear models. The coupled switching linear model is an 
interactive process of two switching linear models. 
Coupling is given through causal influence between 
their hidden discrete states. The parameters of this 
model are learned via EM algorithm. Tracking is per-
formed through the coupled-forward algorithm based 
on Kalman filtering and a collapsing method. A model 
with maximum likelihood is selected out of a few 
learned models during tracking. We demonstrate the 
application of the proposed model to tracking and rec-
ognizing two-hand gestures 
 
1. Introduction 
 

Gesture recognition plays an important role in a host 
of man-machine interaction applications. A well-known 
method in gesture recognition is HMM (Hidden Markov 
Model) [11,13,14,15], which is essentially a quantiza-
tion of time series (observation sequence) into a small 
number of discrete states with transition probabilities 
between states.  

In HMM-based gesture recognition schemes, there 
are two bottlenecks. One is a limitation in treating with 
time series having dependencies because HMM-based 
schemes are based on distributions of statistically inde-
pendent observations or measurements. The other is a 
difficulty in dealing with multiple interacting processes. 
HMM is ill-suited to this problem because it has a single 
state variable (hidden discrete states). Many interesting 
man-machine interfaces are composed of multiple inter-
acting processes. This is typically the case for systems 
that have structure both in time and space [16]. 

We adopt a dynamic process to explain dependencies 
between spatio-temporal configurations of the sequence. 
In fact, if the dynamic model is known, we might be 
able to infer states, for example, the positions and 
shapes of the hand over time. However, real cases are 
not so simple since shape-changing hand gestures ex-
hibit complex and rich dynamic behaviors. To model 
such shape-changing hand gestures, we introduce 
switching linear dynamics, which has been developed in 
fields ranging from econometrics to engineering [3,5,6,7, 
12]. It combines the discrete transition structure of 

HMM with the stochastically linear dynamic model of 
state-space model. Therefore, it may be able to over-
come the first bottleneck of HMM. However, the second 
remains in this method. CHMM (coupled hidden 
Markov model) [16,17,19] has been proposed to deal 
with interacting processes. However, since CHMM in-
herits from HMM, it also has a limitation in considering 
trajectory information in time. 

Our goal in this paper is to track and recognize two-
hand gestures simultaneously. The process of two-hand 
gestures can be considered as interacting processes of 
two one-hand gestures. We propose a method coupling 
switching linear model to overcome the second bottle-
neck in HMM-based gesture recognition. Two switching 
linear models are coupled through causal influences 
between their hidden discrete states. Reynard [18] has 
introduced a coupling concept to track complex motions, 
however this means just a coupling of two kinds of con-
tinuous state variables in a single process, and is essen-
tially different from interaction considered here. 

A well-known problem in switching linear model is 
that the presence of Markov switching makes exact in-
ference impossible. In this paper we use an approximate 
inference based on a collapsing method to avoid the 
problem. To estimate the parameters of switching linear 
model we present an EM learning process into which 
approximate inference using the collapsing method is 
well incorporated.  

Hand contours are parameterized into shape vectors 
by the active contour model, and the shape vectors are 
considered as state vectors in the switching linear model. 
We demonstrate an application of the coupled switching 
linear model to tracking and recognizing two hands 
whose shapes change during their motion. By consider-
ing the coupling of two hand motions, the method can 
track both hands even when one of them is not observed 
well in images by occlusions or complex backgrounds. 

The paper is organized as follows: In the following 
section we address the coupled switching linear model. 
The forward and the backward algorithm for approxi-
mate inference are explained. In section 3, we concern 
practical problems in applying active contour model to 
complex hand gestures. In section 4, we explain the EM 
learning process using a collapsing method for the cou-
pled switching linear model. In section 5, we address 
the recognition process where AIC criterion [10] is put 
in use for online selection of the model. The experimen-
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tal results are shown in section 6. Finally, we conclude 
with section 7. 
 
2. Coupled switching linear model 
 

We change the shapes of our hands as well as move 
our hands (arms) when we make gestures. Although 
some gestures are expressed by one hand, many of them 
are done by two hands. To model these two-hand ges-
tures, we have to consider the shapes and motions of 
hands and interactions between the two hands. Here, we 
assume that a two-hand gesture is an interacting process 
of the two hands whose shapes and motions are de-
scribed by the switching linear dynamics, and proposes 
a coupled switching linear dynamic model to capture 
interactions between the two hands. 

 
2.1 Model specification 

 
Switching linear model can be seen as a hybrid 

model of the linear state-space model and HMM. It is 
described using the following set of state-space equa-
tions: 
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In the above equations, tx  is a hidden continuous 
state vector. tu  is independently distributed on the 
Gaussian distribution with zero-mean and covariance 

tmQ , 
1mπ ,

tmF and 
tmD , which are typical parameters of 

linear dynamic model, denote the prior probability of a 
discrete state, the continuous state transition matrix, and 
the offset, respectively. The parameters with the sub-
script tm  are dependent on the discrete state variable 

tm  indexing a linear dynamic model. And the switching 
process between discrete states obeys the first Markov 
process and is defined with the discrete state transition 
matrix Φ . This model can be expressed graphically in 
the form of figure 1. 

Coupled switching linear model is an interactive 
process of two switching linear models. Coupling is 
given through causal influence between their hidden 
discrete states. The complex state space representation 
is equivalently depicted by dependency graph in figure 
2. 

To accommodate another interacting process, it seems 
good enough to consider a single lumped system with 
dimension-increased state variables. However, there 
exist a few problems. Due to increased number of dis-
crete states, the computational cost is prohibitive, and 
sufficient data can rarely be obtained for estimation of 
parameters, usually resulting in undersampling and nu-
merical underflow errors [16]. Consequently, the sug-
gested coupling scheme, as shown in figure 2, offers 
conceptual advantages of parsimony and clarity with 
computational benefits in efficiency and accuracy. This 

is revealed in the following sections. 
 

 
Figure 1. Switching linear model. 

 

 
Figure 2. Coupled switching linear model. tn , ty  and tw  
denote a discrete state variable, a continuous state variable 
and an observation vector, respectively 

 
In the coupled switching linear model, since coupled 

transitions of discrete states have Markov process, it 
follows that 
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referred to in [16], coupling transition probability of 
discrete states can be parameterized as  
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where ck is a normalizing constant, Γ is the state transi-
tion matrix representing causal influences between two 
switching linear system, and superscript ^ denotes the 
lower switching linear system in figure 2. 

 
2.2 Coupled-forward algorithm 

 
Given known parameters of the coupled switching 

linear model, { }ΓΦ,,,,, πDQF , { }ΓΦ ˆ,ˆ,ˆ,ˆ,ˆ,ˆ πDQF , we 
can perform tracking or filtering, which means estima-
tions of continuous states and coupled-joint probabili-
ties of hidden discrete states. In this section we describe 
a filtering method called as the coupled-forward algo-
rithm. 

Following [8], given the known parameters of 
switching linear dynamics, the predicted joint-contin- 
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uous state variable and the corresponding covariance 
are defined dependently on jmt = and imt =−1 : 
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where )(
1|1

i
ttx −− and )(

1|1
i

ttP −− are the filtered continuous states 
and its covariance at time 1−t  based on information up 
to time 1−t . Now the filtered jointed-continuous state 

),(
|

ji
ttx and its covariance ),(

|
ji

ttP  are estimated by the con-
ventional Kalman updating algorithm. In particular, we 
follow Kalman filtering application of [1] and [2] to 
active contour model. 

From the above fact, as noted by [5], switching linear 
dynamic model requires computing a Gaussian mixture 
with tM  components at time t for M switching states. If 
coupled with a N-switching linear system, typically 

tMN )( computations are required ( tt NM + in the case 
of the presented coupled switching linear model ) which 
is clearly intractable for moderate sequence length. It is 
necessary to introduce some approximations to solve the 
intractable computation problem.  

We collapse 22 NM + jointed continuous state vari-
ables into NM + state variables at each time, and can 
avoid prohibitive increase of computational cost. Build-
ing upon ideas introduced by [7], [5] and [8], we present 
the following collapsing method: 

Through the paper, expediently we proceed by evolv-
ing equations only in terms of the upper system in figure 
2.  
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where tO is a sequence ),,,( 21 tooo �  and to is an 
observation vector ),( tt wz . In the above collapsing, the 
coupled-joint probability of discrete states plays a role 
of weighting factor of joint-continuous state variables. 
To complete the collapsing, we have only to calculate 
the weighting factor. Now we present the coupled-
forward algorithm: The filtered coupled-joint distribu-
tion of discrete states is defined by 

)|,,,( 11 ttttt Onmnmp −−                                             (6) 
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where tk is a normalizing constant, 1−tZ  and 1−tW  are the 
observation sequences up to time 1−t  in the upper and 
lower system, respectively in figure 2. From (2) and (3) 
the prediction step given sequence up to time t  gives 
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where pk  is a normalizing constant. Now the follow-
ings can be obtained as 
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The above algorithm can be extended up to more 
coupled models easily. However, since the coupled-
forward algorithm has the complexity )( 22

1 nCTCO �  
where T is the length of an observation sequence and 

nC is the number of states of each switching linear 
model participating in the n-coupled switching linear 
model, the computation cost increases sharply as the 
number of coupling increases. In the case of 2=n con-
sidered in this paper, we have no problem in terms of 
computational cost only if M and N have reasonable 
length. 

 
2.3 Coupled -backward algorithm 

 
While the coupled-forward algorithm is a filtering 

process given sequence up to current time, the coupled-
backward algorithm is a smoothing process given se-
quence of full length. Like the conventional Kalman 
smoothing method, joint-continuous state variable and 
its covariance based on full sequence can be smoothed 
as follows: 

Given jmt = and kmt =+1 ,  
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t PFPP . To calculate the 
smoothed continuous state variable and its covariance, 
given that jmt = , collapsing is performed similarly to 
(5): 
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To complete (10), we turn to derivation of the probabil-
ity of the smoothed coupled-joint discrete states, which 
is given by 
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)|,( 11 ttt Onmp ++  already has been computed from (8). 
From (11) the followings are obtained as  
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3. Active contour model 
 

Active contour models such as snakes and deform-
able templates have practical problems in being applied 
to tracking hand gestures. Although the schemes are 
effective to retrieve features with geometric structures, 
they are too sensitive to noises to track an object under 
a complicated background and also have difficulties in 
progressing into boundary concavities which are fre-
quently seen in shape-changing hand gestures as shown 
in figure 3. 

As a solution, there have been dynamic contour 
methods conjugating prior dynamic models. A shape 
vector is treated as a continuous state vector in dynamic 
models. Dynamics can provide a powerful cue in the 
presence of occlusions and measurement noises. Known 
dynamics also enables a contour to progress easily into 
boundary concavities as shown in figure 4.  

To represent a variety of shapes of a hand, it may be 
an efficient way that outlines of the hand are parameter-
ized by active contour model using B-spline, which was 
well established in [2]. A curve is parameterized into a 
control vector composed of B-spline control points. A 
control vector is transformed to a low-dimensional 
shape vector on a specific shape space formed with 
some key control vectors called as templates. Then the 
shape vector is considered as a state vector in switching 
linear dynamics. 

In applying active contour model to the forward al-
gorithm, we need to compute observation probability 
given a predicted state vector in (5). From the known 
edge variance at each sample point the observation 
probability is computed from the sum of normal dis-
placements between each sample point on the contour 
and the observed edge on its normal line [2]. 

 
4. EM learning 
 

EM algorithm is a general iterative technique for 
finding maximum likelihood parameter estimates in 
problems where some variables are unobserved [4]. It is 
natural to use EM algorithm for our problem, in which 
unobserved variables are continuous state variables tx , 

ty  and discrete state variables tm , tn . 

 

 
Figure 3. B-spline curve fitting 

 

 
Figure 4. B-spline curve fitting with known dynamics. 

 
Assume that the probability density for observation 

sequence is parameterized using λ . The log-likelihood 
is given by 

=)|(log λTOp                                                      (13) 
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where ),( TT NM  and ),( TT YX , are sequences(of length 
T) of discrete states and continuous states, respectively. 
Neal and Hinton [9] showed that the auxiliary log-
likelihood is given by 
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where ),|,,,( λTTTTT OYXNMpp =  and λ  is the pa-
rameter set estimated previously. Based on the collaps-
ing method in the presented switching linear model, 
then L  can be approximately represented as the follow-
ings, up to constants: 
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where )( )(
1
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t DxFx −−= −η  and d  is dimension of 

state vectors. EM algorithm starts with some initial 
guess and proceeds by applying the following two steps 
repeatedly: 

 
E-step On the condition given the observation sequence 
of full length and the previous parameter set TO , λ , we 
estimate continuous states )(

|
)(

| , tt n
Tt

m
Tt yx , the probabilities 

of joint-discrete states )|,( 1 Ttt Ommp − , )|,( 1 Ttt Onnp −  
and the probabilities of discrete states )|( Tt Omp  

)|(, Tt Onp . These estimations are performed through 
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the forward and the backward process described in sec-
tions 2.2 and 2.3. 
M-step  If L~  is expressed by λ  and the estimations 
from E-step, then we estimate λ  maximizing L~ .  

 
The above two steps are iterated until the likelihood 

value converges.  
 
5. Recognition 
 

Recognition of hand gestures can be considered as 
the problem to determine which model tracks a hand 
gesture well. Therefore, a given sequence of hand ges-
tures can be recognized by means of the likelihood val-
ues of candidate models. 

As addressed in section 1, our goal is to track and 
recognize hand gestures simultaneously. So we have to 
compute the likelihood of each model while tracking is 
being performed with the coupled-forward algorithm. 

The coupled switching linear model can be repre-
sented by the parameter set, λ , which consists of 
{ }ΓΦ,,,, πQF  and { }ΓΦ ˆ,ˆ,ˆ,ˆ,ˆ πQF . Likelihood of λ  
given an observation sequence can be calculated by 
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Substituting (6) and (17) into (16), log-likelihood L~  is 
obtained by 
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where tk  has been computed in the coupled-forward 
algorithm. At time τ , the goodness of the fit of a model 
out of the candidate models is evaluated by AIC crite-
rion [10]: 

    nLAIC 22 +−= τ                                              (19) 
where n  is the number of parameters of the model. A 
given sequence of hand gestures can be recognized as 
the model with the minimum AIC value.  
 
6. Experiments 
 

We apply the proposed coupled switching linear 
model to recognizing and tracking two-hand gestures 
simultaneously. We obtain the parameter set dominating 
a two-hand gesture through EM algorithm. Recognition 
of two-hand gestures means the problem to determine 
which model tracks a two-hand gesture well. Therefore, 
the likelihood of a model presented in section 2.4 can be 
a good tool to recognize two-hand gestures. 

We have prepared four models for four two-hand ges-
tures. There are two types of interaction between both 
hands in the gestures. One is that one hand is moving at 

any one time. The other is that two hands are moving at 
the same time. For example, as shown in  (a) and (b) of 
figure 5, model A is actually different from model B 
only in terms of the interaction types: Two hands moves 
simultaneously in figure 5-a differently from figure 5-b. 

After preparing the four models, we have performed 
experiments of tracking and recognition. Tracking is 
performed through the coupled-forward algorithm with 
respect to all models. At the same time, AIC  for all 
models are computed by (19). Accordingly, an observed 
sequence is recognized as the model with the minimum 
value. 

The motion of each hand was modeled to have three 
discrete states, initial pause, moving and final pause. 
For example, in the right hand in figure 5-a, classifica-
tion of the sequence into the discrete states is illustrated 
in figure 6. 

The sequences of tracked and recognized contours 
are shown in figure 5. In (a) and (b) of figure 5, al-
though each corresponding hand has similar motion, 
both two-hand gestures can be discriminated as shown 
in figure 7. This confirms that the proposed coupled 
switching linear model well explains the interaction 
between two hands 

 

 
a. Sequence tracked and recognized by model A 

 

 
b. Sequence tracked and recognized by model B 

 

 
c. Sequence tracked and recognized by model C 

 

 
d. Sequence tracked and recognized by model D 

 
Figure 5. Tracked  and recognized  two-hand gestures. 

 
7. Conclusion 
 

We have proposed a coupled switching linear model, 
which is an interacting process between two switching 
linear models. We have applied the proposed scheme to 
recognizing two-hand gestures. 

The switching linear model well corresponds to tem-
poral motion and shape of hands, and a coupling of two 
switching linear models can explain combination infor-
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mation of the two hands. Experimental results show that 
two-hand gestures are recognized and tracked simulta-
neously using the coupled switching linear model.  

The proposed scheme is expected to be robust against 
partial failure of image feature extraction for one of the 
two hands caused by such as occlusion and complex 
backgrounds, because the shape and motion information 
for both hands are coupled in the model. In other words, 
as long as the one hand is tracked, the error for the other 
hand may be recovered. We are planning to perform 
experiments to examine this. 
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