
A Feature Extraction Approach to Handle Variations
in Camera Viewpoint for Computer Vision Tasks

Dinh Tuan Tran, Hirotake Yamazoe, Nobutaka Shimada, Joo-Ho Lee
College of Information Science and Engineering, Ritsumeikan University, Japan

Abstract— In this paper, an action recognition method that
can adaptively handle the problems of variations in camera
viewpoint is introduced. Our contribution is three-fold. First, a
space-sampling algorithm based on affine transform in multiple
scales is proposed to yield a series of different viewpoints from
a single one. A histogram of dense optical flow is then extracted
over each fixed-size patch for a given generated viewpoint as a
local feature descriptor. Second, a dimension selection procedure
is also proposed to retain only the dimensions that have distinctive
information and discard the unnecessary ones in the feature vector
space. Third, to adapt to a situation in which video data in multiple
viewpoints are used for training, an extended method with a
voting algorithm is also introduced to increase the recognition
accuracy. By conducting experiments using both simulated and
realistic datasets1, the proposed method is validated. The method
is found to be accurate and capable of maintaining its accuracy
under a wide range of viewpoint changes. In addition, the method
is less sensitive to variations in subject scale, subject position,
action speed, partial occlusion, and background. The method is
also validated by comparing with state-of-the-art view-invariant
action recognition methods using well-known i3DPost and MuHAVi
public datasets.

I. Introduction

In the fields of computer vision and machine learning, action
recognition (AR) is a process of assigning an action data (i.e.,
video) captured via a single-camera or a multi-camera system
into an action label (i.e., action class). The AR scheme has
been an important and popular topic in many applications, such
as human-computer interaction [1] and healthcare monitoring
system [2]. However, AR still remains challenging for realistic
environments due to several key problems. In particular, the
variations in camera viewpoint remain the main challenge.
Almost all previous methods are based on fixed viewpoints.
In a real-world environment, the viewpoint may change when
the action zone changes. For example, the operating rooms
in different hospitals have different features in terms of room
design, equipment arrangement, etc. When a surgical workflow
analysis system, such as the system in [2], is deployed to
various operating rooms, the camera is needed to be re-arranged
so that it fits into each room and does not affect the operation
adversely. In such a case, the camera cannot be placed in a fixed
viewpoint, allowing only an approximate location. Therefore,
an AR method that is invariant under a certain range of angles
would be more realistic and usable.

In this study, an AR method sequentially using multi-scale
affine transform, optical flow (OF) feature, histogram of op-
tical flow (HOF) feature descriptor, k-means clustering, and

1http://www.aislab.org/index.php/en/mvar-datasets

dimension selection, is proposed. The intent is to address the
problem of variations in camera viewpoint. Here, each step
has its own meaning. There are two central ideas behind this
work. The first one is to prevent a significant decrease in
AR accuracy when the viewpoint changes by using the affine
transform to generate local features (i.e., OFs) for multiple
viewpoints from a single one. The second one is to improve
the accuracy by proposing the dimension selection procedure
to preserve only the dimensions that are meaningful for the
recognition and reduce the unnecessary information in the
feature vector space. The purpose of performing the affine
transform in multiple scales is to make the method less sensitive
to subject scale variations. The OF feature is utilized to capture
local movement information in an action video. The HOF
and k-means clustering steps make the method more robust
to noise and some variations, such as subject position and
action speed. This work focuses on the viewpoint variation
problem within a certain range of angles, rather than all
possible angles due to the practical reason described above.
It is also experimentally verified that the proposed method is
less sensitive to variations in subject scale, subject position,
action speed, partial occlusion, and background. In addition, a
voting algorithm is also proposed to adapt to a situation which
uses video data in multiple viewpoints for training. Finally,
well-known i3DPost and MuHAVi public datasets are adopted
to compare the averaged accuracy of the proposed method
with that of state-of-the-art view-invariant action recognition
methods.

II. RelatedWork

There are numerous publications in the field of view-invariant
AR [3]–[6]. Zhang et al. [3] overcame the view-variance
problem by learning transfer dictionary using a synthetic 3D
and 2D video database constructed from human models. Zheng
et al. [4] proposed two approaches, which utilize a dictionary
for each viewpoint or just a common dictionary shared across
multiple viewpoints for the cross-view AR. Chaaraoui et al. [5]
introduced an action representation based on the sequences of
key poses, which are actually contour points of human silhou-
ettes. Moreover, Yang et al. [6] proposed a feature selection
procedure, named multi-view rank minimization-based Lasso
(MRM-Lasso). The MRM-Lasso jointly uses Lasso for sparse
feature selection, and rank minimization to learn appropriate
patterns through viewpoints. In practice, these methods require
video data with action labels in multiple viewpoints including
a set of test viewpoints for training purposes. Consequently,

when the camera is moved to a different space, first one needs
to record the action data in the new viewpoint, and the training
phase is then executed again prior to testing. These methods
were not evaluated for some key variations, such as partial
occlusion–deemed to be an important benchmark. For instance,
silhouette extraction in [5] could be significantly affected by the
presence of partial occlusion. Other recent works on the view-
variance problem have been introduced for AR in [7], [8], and
for other topics in [9]–[11].

In [12], Kong et al. proposed a novel deep learning model
to learn discriminative view-specified and view-shared features
that are robust to viewpoint variations. The view-specified
feature extracts the unique dynamics for each viewpoint, while
the view-shared feature encodes common patterns between
multiple viewpoints. Furthermore, some other methods using
deep learning have been proposed to overcome the problem
of variations in camera viewpoint for AR in [13], [14], and
for other topics in [15]–[18]. However, in almost all deep
learning based approaches, a large set of labeled training data is
required. In addition, incomplete or inaccurate input data will
simply yield wrong results.

The view-unconstrained AR method that is introduced in
this paper, does not require such a large set of training
data. It employs affine transform, HOF, and k-means. Chen
et al. [19] adopted the method of affine transform for an
encryption algorithm using hyperspectral data in fractional
Fourier domain. Gardezi et al. [20] used Affine Scale Invariant
Feature Transform (ASIFT) which is an extension of affine
transform algorithm to enhance the performance of the spatial
correlation filter (SPOT MACH filter). The affine transform
method was also employed by Xue et al. [21] for a dissimilarity
measure to match anisotropic-scale junctions that are detected
by approximately calculating the endpoints of branches across
separated indoor frames. Similarly, the HOF feature descriptor
is extensively utilized in many motion related investigations.
Recently, Xia et al. [22] combined Temporal Convolutional
Neural Network (TempCNN) models with optical flow to
detect local anomalies by tracking CNN features over time.
Happy et al. [23] took into account the OF feature to build
fuzzy HOFs for recognizing micro-expression. In essence, this
method analyzes the rapid involuntary facial movements to
reveal the genuine feelings of an actor. In [24], HOF was
incorporated with its orientation, velocity, and entropy to detect
unusual events in videos of crowd scenes by recognizing the
patterns that might lead to such events. Fuente-Tomas et al.
[25] developed a classification based on k-means clustering
that allocates patients according to their severity for helping
clinicians in personalized and shared decision processes of
bipolar disorder. Dubey et al. [26] used k-means to compare
with the fuzzy c-means clustering algorithm on breast cancer
data–one of the most common cancers in the world. Kant et
al. [27] applied k-means in a recommender system based on
collaborative filtering to rank various products.

III. ProposedMethod

A key problem, not only for AR but also for any recognition
task in computer vision under a camera viewpoint change is
that, the distance between different viewpoints in the same
action class is larger than those between different classes. There
are two general approaches to solve this problem. The first
approach is to decrease the distance of various viewpoints in
the same action class. On the other hand, the second approach
is to increase the distance of various classes. In this work,
two methods are proposed to adopt these approaches. The first
method utilizes the affine transform at multiple scales for a
single viewpoint with the purpose of increasing the capacity
while dealing with a significant viewpoint change. The second
method eliminates the dimensions in a K-dimensional feature
vector space without which the distance among different classes
increases. The details of both methods are given in Sect. III-A
and Sect. III-E.

By integrating the above two methods with the HOF feature
descriptor and k-means clustering algorithm, a viewpoint un-
constrained AR method is proposed with the flow charts shown
in Figs. 1, 2, and 5. There are training and testing phases.
In the training phase, the video data for all action classes
in a specified camera viewpoint are processed. Firstly, each
video is transformed by using the affine transform technique in
multiple scales (Sect. III-A) to generate N f videos in total.
Secondly, dense OF is extracted between two consecutive
frames of each video in generated video collection (i.e., bag).
Gunnar Farneback’s algorithm [28] is adopted for this OF
calculation (Sect. III-B). Thirdly, histograms for OFs are built
and normalized in a block unit as described in Sect. III-C.
The output of this step is the collections of HOF vectors for
all action videos in the training viewpoint. Subsequently, k-
means clustering algorithm is used to organize all training
HOF vectors into K clusters (Sect. III-B). Each HOF vector
thus corresponds to a cluster index, and each cluster index
corresponds to a cluster center. As a result, a collection of
affined multi-scale features (i.e., cluster indexes) is gained from
an input video of a single viewpoint. In reality, each of these
collections can be represented by a histogram of clusters as
a video descriptor vector. To complete the training phase, all
training video descriptor vectors are passed through one more
step, namely the dimension selection step, to reduce the non-
essential dimensions, and to preserve only the useful ones. This
step yields the final video descriptor feature for each video in
all the classes with the remaining dimensions as well as the
trained k-means cluster centers for further AR testing. In the
testing phase, each video data of an unknown action class in a
different viewpoint is processed in the same way–except for
the k-means clustering and dimension selection steps. More
specifically, the testing HOF vectors are mapped with the
nearest trained cluster center to get a corresponding cluster
index. The remaining dimensions in the training phase are
utilized to obtain the final video descriptor vector without any
new cluster-training or dimension-selecting processes. Finally,
the action class for the input testing video is identified to be

Fig. 1: Overview of the proposed method for both training and testing phases (different camera viewpoint(s) for each phase).

the one, which has the closest video descriptor vector to its
own video descriptor vector using the Euclidean distance. In
the case of multiple training viewpoints, a voting procedure is
used to decide the final action class for the testing video. The
details of the proposed method are described in the following
subsections.

A. Multi-Scale Affine Transform

Firstly, a set of various viewpoints is generated from a single
one using the affine transform A that includes four parameters
as presented in (1). In addition, the geometric relationship of
these parameters is illustrated in the left of Fig. 3. Here, ωo

r

is the camera rotation angle according to its roll axis. Note
that this work focuses on the AR tasks in which the camera is
fixed while performing an action. When the action is performed
in a different space (e.g., room), the camera is needed to be
moved and re-arranged. It is difficult to have the exact same
camera viewpoint due to the design of that space. However,
the camera can be placed in parallel or nearly parallel with the
space. In other words, the roll angle ωo

r of the camera can be
assumed to be always zero, and it can be ignored for the affine
transform. The remaining three parameters are scale factor λ,
tilted subject rotation angle t, and longitude subject rotation
angle φ. These are needed to be considered for a full affine

Fig. 2: Overview of the proposed method for both training and testing phases in the case of single training viewpoint (different
camera viewpoint for each phase).

Fig. 3: Overview of multi-scale affine transform. Geometric
relationship of affine decomposition on the left, and sampling
process illustrations in the middle and on the right. Each circle
corresponds to a tilt t value, each colored diamond indicates a
pair of t and longitude φ, and generated viewpoints having the
same t are illustrated by the same color.

invariant. The latitude θ in Fig. 3 is equivalent to the tilt t, and
can be calculated via θ = arccos 1/t. From a single viewpoint,
a sampling process is performed by changing these parameters
such that there is a good compromise between accuracy and
sparsity.

A = λ

cosωo
r − sinωo

r

sinωo
r cosωo

r

 t 0

0 1

cos φ − sin φ

sin φ cos φ

 . (1)

More specifically, every frame in each action video is resized
by multiple pairs of λx and λy scale factors. This process is to
make the method more robust to variations in subject scale.
While λy varies from λmin

y = 0.2 to λmax
y = 0.5 by a sampling

step of λstep
y = 0.1, λx changes from λy − ∆λx to λy + ∆λx by a

step of λstep
x = 0.1, where ∆λx = 0.1 is a constant. At each pair

of λx and λy, the frame after being resized is denoted as f . Here,
w and h correspond to its width and height, respectively. The
interpolation method, which is used for resizing frames is inter-
area, applies a resampling technique using pixel area relation.
The inter-area gives moire’-free results, and is preferred for
downsampling (i.e., downscaling) frames. After that, the frame
f is converted to grayscale and then affined by the steps outlined
below. In addition, this sampling process is illustrated in Fig.
3.

1) Calculate the tilt factor t via (2). Each t corresponds to
a circle in Fig. 3.

2) Loop over the longitude rotation φ from 0 to a ∗ b/t by a
sampling step of b/t such that a ∗ b/t < 180 deg, where
b = 72.0 deg is a constant indicating rotation angle.

3) At each pair of t and φ (i.e., a colored diamond in Fig.
3, each color corresponds to a t value), 2x3 transform
matrix is calculated based on the rotation factor φ, and
then the affine transform is applied to the frame f using
the calculated matrix with the bilinear interpolation and
border-replicate pixel extrapolation, in which the row
or column at the very edge of the original frame f is
replicated to the extra border.

4) Finally, a set of N f affined frames fi, i{0, ...,N f − 1} (i.e.,
N f diamonds in Fig. 3) is obtained from the original
frame f . Each frame fi has a size of (w fi , h fi) and the
frame f0 (i.e., i = 0) is exactly the original f . In other
words, a collection of N f multi-scale, multi-view videos
can be yielded from a single-view video, i.e., N f = 49 in
this work.

t =
λy + ∆λx

λx
. (2)

B. Farneback Optical Flow Extraction

In computer vision based AR tasks, one of the most common
and effective approaches is to extract the motion information
from every movement of the subject performing an action.
Optical flow (OF) is a well-known local motion feature. In this
research, after generating N f affined videos for each single-view
one, a dense OF is computed from every pair of two consecutive
grayscale affined frames in an affined video using Gunnar
Farneback’s algorithm [28]. Unlike a sparse OF extraction,
estimation OFs on a dense grid of pixels or all pixels in the
frame, was proposed in [28]. Here, all parameters in the Gunnar
Farneback’s algorithm are experimentally configured with
• three pyramid layers including the initial frame,
• each next layer is twice smaller than the previous one,
• the averaging window size is 15,
• the number of iterations the algorithm does at each pyra-

mid level is three,
• the pixel neighborhood size used to find polynomial ex-

pansion in each pixel is five,
• the Gaussian standard deviation that is utilized to smooth

derivatives used as a basis for the polynomial expansion
is 1.2, and

• the initial OF approximation is the output of the previous
OF computation.

From the local dense OF features (i.e., yellow vectors in Fig.
4) calculated above, all the OFs close to the boundary of the
affined frame fi support (i.e., parallelogram in Fig. 4) are then
removed by a distance threshold. The distance thresholds for
both width and height dimensions are set to 0.2∗w fi and 0.2∗h fi ,
respectively. Moreover, the OFs whose magnitude li, j is smaller
than a threshold εl = 0.5, are eliminated for noise abatement
purposes.

C. Histogram of Optical Flow

As mentioned earlier, the main idea behind this work is to
generate local features for multiple viewpoints from a single
one. The local feature is an OF as described in Sect. III-
B. A feature descriptor is also needed for that OF. In this
research, the histogram of optical flow (HOF) is adopted for the
local feature descriptor. Indeed, the human body is not planar
as it contains significant depth variations. Therefore, a local
descriptor like HOF can adapt to this situation by separating
the frame into smaller patches called blocks, and treating them
as flat surfaces. In this way, the affine transform described in
Sect. III-B can work well for a significant change in camera
viewpoint.

Fig. 4 illustrates the details of the HOF calculation process.
HOF for each affined frame fi is calculated based on the
previously computed dense OFs. Firstly, a frame fi with a
size of (w fi , h fi) pixels is divided into (ni,x

block, n
i,y
block) (orange)

blocks and (ni,x
cell, n

i,y
cell) (purple) cells by a grid of vertical and

horizontal (blue) lines. Each block consists of multiple cells.
For convenience, the cell size is denoted as (sx

cell, s
y
cell) (e.g.,

Fig. 4: An example of the calculation procedure for histogram
of optical flow. Cell size is (6, 6) pixels, block size is (2, 2) cells,
and dense optical flow is normalized into five bin dimensions
in the clockwise direction.

(6, 6) in Fig. 4 and (16, 16) for experiments in Sect. IV)
pixels, the block size is denoted as (sx

block, s
y
block) (e.g., (2, 2)

in Fig. 4 and (4, 4) for experiments in Sect. IV) cells. Here,
(ni,x

cell, n
i,y
cell) and (ni,x

block, n
i,y
block) are calculated using (3) and (4),

respectively. As the remainder of a division between the frame
size and the cell size may not always be equal to zero, all
the pixels in four borders (i.e., red rectangle in Fig. 4) are
symmetrically cropped such that the remainder of the division
is forced to zero. Secondly, all OFs remaining after Sect. III-B
are normalized in a clockwise direction into nbin (e.g., five bins
in Fig. 4 and four bins for experiments in Sect. IV) using (5).
After the normalization is applied, a j-th OF in frame fi has
two information: flow magnitude li, j and normalized direction
αi, j. Thirdly, HOF with a fixed number of bins (i.e., nbin) is
calculated for each cell. For example, a cell HOF in Fig. 4
contains five bins. After that, all cell HOFs in each block are
concatenated to a block HOF that is essentially a vector of
sx

block ∗ sy
block ∗ nbin dimensions. The block HOF vector is finally

normalized by dividing its vector length into each of its bin
value (i.e., L2 norm).

ni,x
cell = w fi/sx

cell, ni,y
cell = h fi/sy

cell, (3)

ni,x
block = ni,x

cell − sx
block + 1, ni,y

block = ni,y
cell − sy

block + 1, (4)

αi, j = argd

(
d∗

360
nbin
≤ αi, j < (d+1)∗

360
nbin

)
, d{0, ..., nbin−1}. (5)

Because the individual dense OFs may contain noise, and
are sensitive to overall lighting, calculating a HOF over each
patch makes this descriptor more robust to noise and subject
position variations. Especially, normalizing the block HOFs
makes them less sensitive to variations in action speed and
lighting. Noise can be eliminated more by ignoring the blocks
where the number of valid OFs is smaller than a threshold εn.

εn = min
(
sx

cell, s
y
cell

)
∗min

(
sx

block, s
y
block

)
. (6)

D. K-Means Clustering

K-means clustering is a method of vector classification that
solves a well-known clustering problem in data mining. In un-
supervised learning, k-means is one of the simplest algorithms
where it follows a straightforward procedure for classifying a
given set of feature vectors into a certain number of clusters
(i.e., K clusters) where each feature vector belongs to the cluster
with the nearest center.

In this work, k-means is utilized to map a vector in sx
block ∗

sy
block ∗ nbin dimensional space into an one-dimensional vector

(i.e., number). This can be treated as a normalization process
to reduce noise and handle movement variations in the same
action class. More specifically, k-means trains K cluster centers
corresponding to K clusters (i.e., groups) in the training phase.
All normalized block HOF vectors in both the training and
testing phases are then mapped with the nearest trained cluster
center. Thus, it is able to represent each HOF vector via a
corresponding cluster index. After this step, a collection of
multi-scale and multi-view features which is actually a bag
of cluster indices, is obtained from a single viewpoint input
video. Each of these collections is essentially a distribution
(i.e., histogram) vector of clusters that is treated as a video
feature descriptor (see Fig. 2). For convenience, the number of
action classes is denoted as N, the number of dimensions in the
final feature vector space that is utilized for video descriptors
is denoted as K. Here, K is actually the number of clusters in
k-means. The descriptor vector vi, j is for the j-th video in the
i-th action class, where i{0, ...,N − 1} is presented as (7).

E. Dimension Selection

Ideally, the distance among all different action classes should
be increased to be as long as possible. Several dimensions
in the feature vector space is thus discarded to accomplish
this. This process is called dimension selection. Note that it
differs from dimension reduction processes, such as Principal
Component Analysis (PCA) [29] which is often used to reduce
dimensions of a vector space by transforming that vector space
into a smaller one that still maintains most of the information
in the original vector space. More specifically, in the training
phase, after achieving the K-dimensional descriptor vector vi, j

for each j-th video in the i-th action class, the k-th dimension
where k{0, ...,K − 1} is sequentially gotten out. The (K − 1)
dimensional vector is then re-normalized by dividing its length
into the value in each dimension to yield a new vector vi, j,−k.
An example of identifying the first dimension (i.e., k = 0) is
illustrated in (8). Subsequently, the sum of distances among
all pairs of different classes is re-calculated as presented in (9)
below. If the original sum of distances before identifying the
dimensions is s as given in (10), and a K-dimensional binary
mask vector m is also declared to indicate whether a dimension
is retained (i.e., mk = 1) or not (i.e., mk = 0) as in (11),
then each element mk in the mask m will be decided using
(12). Here, εs is a threshold (e.g., εs = 10−6 in Sect. IV-A,
εs = 1.6 ∗ 10−3 in Sect. IV-B, and εs = 2 ∗ 10−3 in Sect. IV-C).
Finally, the descriptor vector vi, j considering only K′ retained

dimensions is re-normalized by using L2 norm to obtain the
final K′-dimensional descriptor vector (i.e., v′i, j) for each j-th
video in the i-th action class. This binary mask vector m will
be further used to ignore dimensions (i.e., mk = 0) for input
video in the testing phase (see 13).

vi, j = (v0
i, j, v

1
i, j, ..., v

K−1
i, j), (7)

vi, j,−0 = (v1
i, j,−0, v

2
i, j,−0, ..., v

K−1
i, j,−0), |vi, j,−0| = 1, (8)

s−0 =
∑

i, j, i′, j′
‖vi, j,−0 − vi′, j′,−0‖, i, i′{0, ...,N − 1}, i , i′, (9)

s =
∑

i, j, i′, j′
‖vi, j − vi′, j′‖, i, i′{0, ...,N − 1}, i , i′, (10)

m = (m0,m1, ...,mK−1), (11)

m0 =

{ 1 if
s−0 − s

s
≤ εs

0 otherwise
. (12)

Consequently, these K′-dimensional video descriptor vectors
in the training phase are then used to compare with the K′-
dimensional video descriptor vector of an input video in the
testing phase to output an action label (i.e., class) for that video.
In other words, the output action label cvt for a testing video vt

is the nearest one that is calculated using the Euclidean distance
as shown in (13) bellow. This is known as the AR process.

cvt = argmini

K−1∑
k=0

mk ∗ (vk
t − vk

i, j)
2. (13)

F. Multiple Training Viewpoints

There is a fact that a room is often equipped with multiple
cameras instead of just one camera. In such a case, the cameras
are often located around the room to fully cover the actor
performing actions from multiple viewpoints. Therefore, the
AR accuracy can be further improved by using the recognition
result from each camera and the relative position relationship
between these cameras wisely. In this section, an extended
method is proposed to adapt to this situation as shown in Fig.
5. There are two changes to the method proposed in Fig. 2.
The first one is that the action video data in all available
viewpoints instead of just the data in one viewpoint, are utilized
for training. The second one is the last two steps (i.e., distance
ranking based on Euclidean distance and action recognition
using voting algorithm) in Fig. 5. They are used instead of the
last step (i.e., action recognition using Euclidean distance) in
Fig. 2.

More specifically, for each K′-dimensional video descriptor
vector of an input video v′t in the testing phase, R video
descriptor vectors from all viewpoints in the training phase
that have closest Euclidean distances to the testing video v′t,
are considered as candidates to decide the final output action
label. The output label is voted by using the voting procedure
proposed in Algorithm 1. It requires R + 2 scoring coefficients
and three scoring steps to accomplish this. In the first step (from
line 4 to line 6 in Algorithm 1), R first coefficients from µ0,0

Fig. 5: Overview of the proposed method for both training and testing phases in the case of multiple training viewpoints (different
camera viewpoint(s) for each phase).

TABLE I: Parameter setting in Algorithm 1 for experiments on i3DPost dataset in Sect. IV-B and MuHAVi dataset in Sect. IV-C.

Dataset R µ0,0 µ0,1 µ0,2 µ0,3 µ0,4 µ0,5 µ0,6 µ0,7 µ0,8 µ1 µ2

i3DPost with 6 actions 6 1.0 0.4 0.2 0.1 0.0 0.0 - - - 1.2 0.6

i3DPost with 10 actions 7 1.0 0.4 0.2 0.1 0.0 0.0 0.0 - - 1.2 0.6

MuHAVi with 17 actions 9 2.0 0.8 0.4 0.2 0.1 0.0 0.0 0.0 0.0 2.4 1.2

to µ0,R−1 are used to score actions that appeared in the distance
ranking list �R based on their positions in �R. This means that,
if a training video v′i, j is closer to the testing video v′t than
another v′i′, j′ , then the corresponding action class ci will gain
more score than ci′ . In the second step (from line 7 to line 9), a
score µ1 is given to an action class ci for each pair of videos in
�R that have the same class ci and were recorded from the same
viewpoint. This is because from our point of view, if there exist
such videos in the ranking list, action class and viewpoint of the
testing video could be similar to those of such videos. Similarly,
if there is a group of three training videos in �R that has the
same class but was recorded from three neighbor viewpoints,
the testing video could has the same class and viewpoint with
the video in the middle viewpoint of that group. Hence, a score
µ2 should be given to that class in such a case (see the third
step from line 10 to line 12 in Algorithm 1). All parameters in
Algorithm 1 are configured for experiments on i3DPost dataset
in Sect. IV-B and MuHAVi dataset in Sect. IV-C as shown in
Table I. An example of the input and output for Algorithm 1
is shown in Fig. 6.

IV. Experiments

In this section, the details of the experiments that were
conducted to evaluate the proposed method on both custom-
made and public datasets are provided. On the custom-made
datasets, the effectiveness of each contribution in this work as
well as the invariant range in viewpoint for the proposed method
using singular training viewpoint in Fig. 2 were evaluated. On
the other hand, comprehensive comparison results with state-
of-the-art view-invariant AR methods are given by using the
proposed method for multiple training viewpoints in Fig. 5 with
well-known public datasets named i3DPost [30] and MuHAVi
[31].

A. Experiments on Custom-Made Datasets1

Because there are two major contributions for the method
of singular training viewpoint in this work (multi-scale affine
transform and dimension selection), the experiments on four
methods were performed to assess the impact of these steps on
the AR accuracy under a significant change in the viewpoint. As
denoted in Table III, the first method is the simplest method

Algorithm 1: Proposed voting algorithm for multiple
training viewpoints.

Input: Scoring coefficients µ0,0, µ0,1, ..., µ0,R−1, µ1, µ2,
and a distance ranking list
�R =

{
(ci, j,r,gi, j,r, di, j,r)r

}
sorted by ascending d

value, in which
• N is the number of action classes,
• R is the number of videos in �R,
• i{0, ...,N − 1}, r{0, ...,R − 1},
• ci, j,r is the i-th action class (i.e., ground truth) for its j-th

training video (i.e., v′i, j),
• gi, j,r is the camera viewpoint from which the video v′i, j

was recorded, and
• di, j,r is the Euclidean distance from the testing video v′t

to the training video v′i, j.
Output: Scoring list �N = {(ci, zi)i} , i{0, ...,N − 1} and

an action class label ci that has highest score
zi in �N .

1 Initialization: for i = 0 to N − 1 do
2 Set zi to zero
3 end
4 Step 1: for r = 0 to R − 1 do
5 Increase the corresponding zi by the scoring

coefficient µ0,r
6 end
7 Step 2: if exist a pair of r and r′ that ci, j,r is equal to

ci′, j′,r′ (i.e., i is equal to i′) and gi, j,r is equal to gi′, j′,r′

then
8 Increase the corresponding zi by the scoring

coefficient µ1
9 end

10 Step 3: if exist three r, r′, and r′′ that i is equal to
both i′ and i′′; gi, j,r, gi′, j′,r′ , and gi′′, j′′,r′′ are three
consecutive (i.e., neighbor) viewpoints then

11 Increase the corresponding zi by the scoring
coefficient µ2

12 end

TABLE II: Scenarios of variations and their video sizes in sim-
ulated MVAR-Unity3D Attack (C0 to C7) and realistic MVAR-
GoPro Standing Exercise (CR) datasets.

Variation Videos Variation Videos

C0 None 1,520 C4 Lighting condition 1,520

C1 Subject scale 1,520 C5 Partial occlusion 1,520

C2 Subject position 1,520 C6 Background 1,520

C3 Action speed 1,520 C7 Combined 1,520

CR MVAR-GoPro 480 Total 12,640

called NONE, which does not use either affine transform or
dimension selection steps (shown in Fig. 2). In other words,
the number of affined viewpoints N f in this method is one.
The remaining steps including OF extraction, HOF calculation,

and k-means clustering are performed only on the original
input video. In addition, all dimensions in the final feature
vector space are retained for recognizing the action. The second
proposed method (i.e., DS) excludes the affine transform step.
The essential dimensions are selected but no new viewpoint is
generated. Conversely, the third one named AT has the affine
transform but excludes the dimension selection. The last one
(proposed exclusively in this work, called BOTH) includes all
the steps shown in Fig. 2.

The aim of these experiments is to monitor how the accuracy
changes when the camera is moved around the action subject.
To accomplish this, of custom-made datasets, action videos
in only one viewpoint are used for training, videos in each
other viewpoint are sequentially used for testing. As explained
previously, the camera angle on the roll axis was assumed to be
always zero. Since the remaining two axes are equivalent and
have the same properties, only the viewpoint difference problem
for the yaw axis was considered. The experimental results for
the pitch axis would be the same. For more specific evaluations,
the camera should be moved to as many places as possible, and
also separately measure the impact of other variations including
subject scale, subject position, action speed, lighting condition,
partial occlusion, as well as the background. However, it is
difficult to record a dataset with such requirements in a realistic
environment. To accomplish this, a simulated dataset named
MVAR-Unity3D Attack1 (MVAR stands for Multiple Viewpoints
Action Recognition) was first built with many camera view-
points and scenarios of variations (e.g., scenario of variations
in partial occlusion), and the proposed method was evaluated
on it. The results were then confirmed by using a much smaller
self-recorded realistic dataset named MVAR-GoPro Standing
Exercise1.

The parameter settings as described in each step of Sect. III
were used. In addition, the number of k-means clusters K
utilized for each of the four methods is shown in Table III.
These values of K were experimentally derived after testing a
wide range of K from 200 to 20, 000 by a step of 200. In both
datasets, the videos have a resolution of 640x480 pixels. The
number of action classes N is eight (see Tables IV and V).
Videos in the viewpoint with the roll angle ωo

y = 0 (i.e., Cam
0 in Fig. 10) were used for the training phase. The remaining
in one another viewpoint were sequentially used for testing.

1) Experiments on MVAR-Unity3D Attack Dataset: To
record this large and complex dataset, a simulation on Unity3D
software based on 3D models made by Studio New Punch
[32], Niandrei [33], Explosive [34], and RockVR [35] was
conducted. The experimental setting is shown in Fig. 7. More
specifically, a camera was utilized and rotated around the roll
axis (i.e., Y axis) by a step ∆ωo

y of 5 deg from 0 to 90 deg to
have 19 viewpoints. The viewpoint differences that are greater
90 deg and less than 270 deg were ignored in these experiments.
This is because, in almost all recognition tasks, the camera
is practically located in the front of the action subject. The
viewpoints from 270 deg were also ignored as they are on the
opposite side and would yield similar results. In this dataset,

Fig. 6: An example of input and output for Algorithm 1 when the number of viewpoints is 8, the number of action classes is
N = 10, the number of videos in distance ranking list is R = 7, scoring coefficients µ0,0 = 1.0, µ0,1 = 0.4, µ0,2 = 0.2, µ0,3 = 0.1,
µ0,4 = 0.0, µ0,5 = 0.0, µ0,6 = 0.0, µ1 = 1.2, and µ2 = 0.6.

TABLE III: Methods and their cluster sizes K, ignored dimension sizes in all scenarios of variations from C0 to CR.

Method K C0 C1 C2 C3 C4 C5 C6 C7 CR

NONE None 1000 - - - - - - - - -

DS Dimension selection 1000 349 362 389 370 288 378 349 395 317

AT Affine transform 5000 - - - - - - - - -

BOT H DS + AT 5000 572 577 551 580 556 560 540 574 379

Fig. 7: Experimental setting and several examples of variations for simulated MVAR-Unity3D Attack dataset.

TABLE IV: Action classes in MVAR-Unity3D Attack dataset.

0 Right-hand-hook 4 Left-kick-attack

1 Right-hand-cross 5 Right-kick-attack

2 Left-hand-uppercut 6 Turn-left

3 Right-hand-uppercut 7 Turn-right

there are five characters with characteristic variables, such as
height, head, body, and clothes. Each character performed each
of the eight short action classes twice in each of eight scenarios
of variations as listed in Tables II and IV. In total, the dataset
consists of 19∗5∗8∗8∗2 = 12, 160 videos. There is 1, 520 videos
for each scenario. Especially, for each frame of every video, a

random function was used to make a change within a specified
range of movements (for all parts, e.g., hands, legs, and head)
even though these videos belonged to the same action class (see
movement variations in the second column of Fig. 7). Note that
these movement variations were applied to all frames in every
video of all eight scenarios. The random function was also
utilized to change the subject scale, position where the action
was performed, action speed, lighting condition, location of
partial occlusion, and different backgrounds. Fig. 7 also shows
two examples for each of some variations.

Fig. 8 shows the change in accuracy for all four methods
with various scenarios of variations when the camera was
moved. Firstly, the results of the NONE and BOTH methods
are considered. The figure indicates that the BOTH method

Fig. 8: Accuracy of four methods with eight scenarios of variations when the camera viewpoint changed in MVAR-Unity3D
Attack dataset.

yielded much better results than the NONE method in almost
all scenarios except for the very first viewpoint differences
(0 to 30 deg) in the scenario of lighting condition variations.
While the NONE method tended to decrease very quickly when
the camera moved, the BOTH method was not only accurate,
but also capable to maintain its accuracy from significantly
falling down under a wide range of viewpoint changes (about
65 deg on average). It is observed from Fig. 8 that the blue line
(DS) is always above the black one (NONE). This means that
the dimension selection is an effective procedure to improve
the accuracy. Furthermore, because the orange line (AT) is
less steep than both blue (DS) and black (NONE) lines in all
scenarios, the multi-scale affine transform is confirmed to make
a major contribution by preventing the accuracy from dropping
off in the BOTH method.

It is also observed from the very first viewpoint differences
that the NONE method was significantly affected by variations,
such as subject scale, subject position, partial occlusion, and
background. The BOTH was only slightly affected (often un-
affected) by such variations. This indicates that the multi-scale
affine transform and dimension selection steps made the pro-

posed method more robust to these variations. In particular, the
BOTH method was less sensitive to the subject scale variations,
since the local features (i.e., OFs) were extracted in multiple
scales (Fig. 8b). It was robust to the variations of the subject
position as every frame was separated into smaller blocks.
Instead of the absolute position information, only the HOF local
feature descriptor for each block was employed (Fig. 8c). The
AT method also had a positive impact on the accuracy when
the partial occlusion appeared (Fig. 8f). However, the impact
was not clear in the lighting condition variations, whereas the
DS method was effective in this case (Fig. 8e). It was quite
similar for the variations in the background because the lighting
condition might have changed according to the background
(Fig. 8g). In addition, the variations in action speed did not
affect both the NONE method and the BOTH method (Fig. 8d).
This could be explained via the vector normalization in the
HOF calculation.

Fig. 9 shows the confusion matrices for the four methods
(with all scenarios of variations) when the viewpoint difference
was 60 deg. Per our observation, in such a large viewpoint
change, the NONE method was not unable to distinguish

Fig. 9: Confusion matrices for four methods with eight scenarios of variations when the camera viewpoint changed 60 deg on
the roll axis in MVAR-Unity3D Attack dataset.

TABLE V: Action classes in MVAR-GoPro Standing Exercise
dataset.

0 Ankle-circles 4 Obliques-stretches

1 Neck-rolls 5 Knee-circles

2 Hip-circles 6 Torso-twists

3 Big-arm-circles 7 Jumping-jacks

some actions, such as right-hand-hook (0), right-hand-cross
(1), and right-hand-uppercut (3), which are very similar and
are hard to recognize. In addition, it did not work properly
with other quite distinctive actions. For examples, it commonly
confused right-hand-hook (0), right-hand-cross (1), and left-
hand-uppercut (2) actions which use a hand, with right-kick-
attack (5) which uses right leg; or turn-left (6) with turn-
right (7), which are on opposite sides. In contrast, the BOTH
method was able to accomplish this distinctions well, especially
perfectly recognizing the none (C0), subject position (C2), and
action speed (C3) scenarios of variations.

2) Experiments on MVAR-GoPro Standing Exercise Dataset:
Next, experiments on a realistic dataset were conducted to
validate the overall results achieved from the simulated dataset
as described in Sect. IV-A.1. The experimental setup is shown
in Fig. 10. In this dataset, five GoPro cameras located at
five viewpoints from 0 to 90 deg were utilized. The average
difference between two neighbor viewpoints was 22.5 deg.

Fig. 10: Experimental setting for realistic MVAR-GoPro Stand-
ing Exercise dataset.

There were six actors and eight action classes of standing
exercises as listed in Table V. Each action was performed twice
by each actor. Hence, there were 480 videos in total. In these
experiments, videos recorded via the Cam 0 in Fig. 10 was
used for training. The final results are presented in Fig. 11.
While the left side of the figure presents the performances of
all methods for various viewpoint differences, the right side
shows four confusion matrices for the four methods when the
camera was located at the Cam 2, which has a viewpoint
difference of 45 deg. These results are equivalent to the results

Fig. 11: Accuracy and confusion matrices for four methods
when the camera viewpoint changed 45 deg on the roll axis in
MVAR-GoPro Standing Exercise dataset.

TABLE VI: The number of clusters for each method in both
subsets of i3DPost dataset and MuHAVi dataset.

Dataset Method K

i3DPost with 6 actions

NONE 600

DS 600

AT 3000

BOTH 3000

i3DPost with 10 actions

NONE 1000

DS 1000

AT 5000

BOTH 5000

MuHAVi with 17 actions BOTH 5000

for the combined (C7) scenario of variations in the simulated
MVAR-Unity3D Attack dataset above. The dimension selection
significantly enhanced the AR accuracy, while the multi-scale
affine transform made the method more robust to the variations
in camera viewpoint. From our observation, when the viewpoint
difference was 22.5 deg, the BOTH method recognized all the
actions perfectly, whereas the accuracy for the NONE method
was just 74 %. The accuracy of the BOTH method decreased by
only 2 % from 100 % to 98 % when the difference increased up
to 45 deg, while in the NONE method it dropped 17 % from
74 % to 57 %. The view-invariant range in this dataset was
about 45 deg. This is a promising result because as mentioned
in Sect. I, this work focuses on the problem of viewpoint
variations in a certain range of angles, rather than all possible
angles. This is because when the cameras are re-arranged in a
different environment, the viewpoint of each camera is usually
changed but the change is often small.

B. Experiments on i3DPost Public Dataset

Next, the proposed method using multiple training view-
points was compared with various other methods published

from 2011 to 2018 including Holte et al. [36], Azary et al.
[37], Iosifidis et al. [38], Castro et al. [39], Hilsenbeck et al.
[40], Zang et al. [3], [41], and Angelini et al. [42], [43]. There
are some state-of-the-art methods among them, such as Zang et
al. [3] (2018) and Angelini et al. [42] (2018). While Zang et al.
[3] learns transfer dictionary using a synthetic 3D and 2D video
database constructed from human models to recognize actions
from arbitrary viewpoints, the view-invariant AR method in
Angelini et al. [42] adopted OpenPose [44], Long Short-Term
Memory (LSTM) Neural Network [45], and 1D Convolutional
Neural Network (1D CNN) [46], which are advanced and well-
used technologies in recent years. Here, OpenPose is a realtime
2D pose estimator for multiple persons by providing 70 face
landmarks, 18 body landmarks, 42 hands landmarks, and six
feet landmarks for each target.

In these experiments, a well-known public dataset named
i3DPost [30] was used for the comparisons. This dataset
consists of eight actors with different body sizes, clothing, na-
tionalities, and sex (i.e., six males and two females), performed
each of 10 action classes once. In 10 classes, there are six single
actions (i.e., walk, run, jump-forward, bend, one-hand-wave,
and jump-in-place) and four combined actions (i.e., sit-down-
stand-up, run-fall, walk-sit-down, and run-jump-walk). Eight
calibrated and synchronized cameras corresponding to eight
viewpoints were utilized to capture action videos in a full high
definition resolution of 1920x1080 pixels. However, all videos
in the dataset were symmetrically cropped and then resized to
have a resolution of 640x480 pixels. This is because such a high
resolution is unnecessary in this work and a smaller resolution
will reduce the processing time. Moreover, although the dataset
also includes actor 3D mesh models and camera calibration
parameters, they were not used. The major challenges here are
that each actor performed actions in arbitrary directions (see
two example videos of the same action class in View 0 of
Fig. 5), action classes are quite similar (e.g., walk, run, and
jump-forward), and there exist both single actions and their
combined ones (e.g., run-jump-walk). Several frame examples
for 10 action classes, eight actors, and eight viewpoints in the
dataset are shown in Fig. 12.

The i3DPost dataset is usually tested with leave-one-actor-out
(LOAO) strategy, therefore this strategy was adopted in these
experiments. In other words, the video data of one actor in all
available viewpoints was used for testing, while the remaining
data in the dataset were for training. The AR accuracy for every
testing actor was then averaged to obtain the final accuracy as
shown in Table VII. Because some methods tested with a subset
of six single action classes, while others performed experiments
on 10 action classes dataset, the proposed method was evaluated
on both subsets. Other parameter settings were the same as in
Sect. IV-A, excepted the numbers of k-means clusters K utilized
for each method in both subsets were vary from 600 to 5000
(see Table VI), and the threshold εs for dimension selection in
Sect. III-E was 1.6 ∗ 10−3.

Table VII shows comparative results of the proposed method
and other works in two middle columns. It is observed that the

Fig. 12: Frame examples for 10 action classes, eight actors, and eight viewpoints in i3DPost dataset. Actions from top to down
rows: walk, run, jump-forward, bend, one-hand-wave, jump-in-place, sit-down-stand-up, run-fall, walk-sit-down, and run-jump-
walk.

TABLE VII: Methods, their recognition accuracy on i3DPost dataset (two middle columns), and other comparisons between
them (two right columns).

Subset of Subset of Not required Separately

Method Published year 6 actions 10 actions multiple training measured

(%) (%) viewpoints variations impact

Holte et al. [36] 2011 89.58 80.00 7 7

Azary et al. [37] 2012 92.97 86.72 7 7

Iosifidis et al. [38] 2012 98.16 - - 7

Castro et al. [39] 2015 99.00 - - 7

Hilsenbeck et al. [40] 2016 92.42 - 7 7

Zang et al. [41] 2016 - 93.75 7 7

Zang et al. [3] 2018 - 94.60 7 7

Angelini et al. [42] 2018 98.95 - - 7

Angelini et al. [43] 2018 99.74 - - 7

NONE 64.84 47.97 " "

DS 89.58 82.19 " "

AT 96.61 91.87 " "

BOTH 99.74 96.72 " "

Fig. 13: Confusion matrices for the proposed method when the
number of action classes were six and 10 in i3DPost dataset.

BOTH method with multiple training viewpoints yielded better
results for both subsets, especially for the 10 classes dataset.
More specifically, with the subset of six classes, the accuracy
99.74% of the proposed method is equal to that of Angelini et
al. [43] and higher than that of Angelini et al. [42] (i.e., 98.95%)
which adopted OpenPose, LSTM, and 1D CNN. In addition,
these methods did not evaluate on the 10 classes dataset, did
not test with singular training viewpoint, as well as did not
independently measure variations impact as in Sect. IV-A (see
last two columns in Table VII). On the other hand, the proposed
method achieved better accuracy (i.e., 96.72%) than Zang et
al. [3] with 94.60% for the 10 classes dataset. Moreover, the
method in Zang et al. [3] requires video data or human models
in multiple viewpoints for training, then it might be impossible
with singular training viewpoint, while the proposed method
just needs data in one viewpoint for training.

Fig. 13 shows confusion matrices of the BOTH for both sub-
sets. It is observed from the matrix on the left that the proposed
method mis-recognized only one video and correctly recognized
other 383 videos. It confused jump-forward (2) with run (1)
which are actually difficult to be distinguished (see second
and third rows in Fig. 12). Furthermore, It is indicated from
the matrix on the right that, the method sometimes confused
walk (0) and jump-forward (2) with run (1) because they are
three quite similar actions; or jump-forward (2) with jump-in-
place (5) because global spatial features are not considered in
this work; or single actions (e.g., walk (0), run (1), and jump-
forward (2)) with their combined actions (e.g., run-jump-walk
(8)).

C. Experiments on MuHAVi Public Dataset

Finally, the proposed method using multiple training view-
points was also compared with other methods published from
2013 to 2019 using another well-known public dataset named
MuHAVi [31]. The methods compared include Chaaraoui et al.
[5], Orrite et al. [47], Murtaza et al. [31], and Nida et al. [48].
Among them, Nida et al. [48] adopted Convolutional Neural
Network (CNN) which is advanced and well-used technologies
in recent years for spatio-temporal feature learning.

MuHAVi-Uncut version of the MuHAVi dataset was used for
the comparisons in these experiments. This is because this ver-
sion contains much longer sequences also involving more actors

and more camera viewpoints. In MuHAVi dataset, eight cameras
were used to record 17 actions performed by seven actors. Each
actor repeated an action three or four times. The 17 actions
include walk-turn-back, run-stop, pull-heavy-object, pickup-
throw-object, punch, kick, shot-gun-collapse, walk-fall, look-
in-car, crawl-on-knees, wave-arms, draw-graffiti, jump-over-
fence, drunk-walk, smash-object, jump-over-gap, and climb-
ladder. Action videos have a resolution of 720x576 or 704x576
pixels. However, all videos in the dataset were symmetrically
cropped and then resized to have a resolution of 640x480 pixels.
This dataset is particularly challenging because of salt-pepper
noise, shadows, and large number of action classes. Some frame
examples for eight viewpoints in the dataset are shown in Fig.
14.

Leave-one-camera-out (LOCO) and leave-one-actor-out
(LOAO) strategies were adopted for these experiments. In the
LOCO strategy, action videos from one viewpoint are used for
testing while the remaining videos are used for training. Simi-
larly, in the LOCO strategy, the video data of one actor in all
available viewpoints was used for testing, while the remaining
data in the dataset were for training. The AR accuracy for every
testing camera (i.e., viewpoint) or actor was then averaged to
obtain the final accuracy as shown in Table VIII. Parameter
settings were the same as in Sect. IV-A, excepted the number
of k-means clusters K for both strategies was 5000 (see Table
VI), and the threshold εs for dimension selection in Sect. III-E
was 2 ∗ 10−3. Parameter setting in Algorithm 1 for this dataset
was different from it in the i3DPost dataset as shown in Table
I.

Table VIII shows comparative results of the proposed method
and other works in two middle columns. It is observed that
although the BOTH method with multiple training viewpoints
yielded a slightly lower accuracy for LOAO strategy comparing
with Nida et al. [48], the proposed method was much more
accurate than others for LOCO strategy. As mentioned in
Sect. I, the camera viewpoint often changes when the action
zone changes. In such a case, acquiring training data for new
viewpoint (e.g., LOAO strategy) is a time-consuming task,
except for online training methods. Therefore, a method that is
more accurate for LOCO strategy would be more realistic and
usable. In addition, these methods did not test with singular
training viewpoint, as well as did not independently measure
variations impact as in Sect. IV-A (see last two columns in
Table VIII).

D. Parallel Processing

More affined viewpoints will need more computer resources
to process the data. Each process among one of the N f

viewpoints is independent from each other in almost all steps
(except for the last action recognition using Euclidean dis-
tance). Therefore, they can be implemented in parallel. As a
result, the processing time is not a problem for the proposed
method.

Fig. 14: Frame examples for eight viewpoints in MuHAVi dataset.

TABLE VIII: Methods, their recognition accuracy on MuHAVI dataset (two middle columns), and other comparisons between
them (two right columns).

Not required Separately

Method Published year LOCO (%) LOAO (%) multiple training measured

viewpoints variations impact

Chaaraoui et al. [5] 2013 50.40 81.50 - 7

Orrite et al. [47] 2014 - 83.9 - 7

Murtaza et al. [31] 2016 52.20 84.10 - 7

Nida et al. [48] 2019 82.04 93.66 - 7

BOTH 85.16 92.94 " "

V. Conclusion

In this paper, a viewpoint-unconstrained method for the AR
was presented. Our contribution was three-fold. First, a multi-
scale space-sampling algorithm based on the affine transform
was proposed to prevent a significant drop in the accuracy
of recognition. Second, a dimension selection algorithm that
determines the dimensions in the feature vector space for use
in the recognition algorithm - improving the accuracy, was
also proposed. Finally, a voting algorithm was introduced to
adapt the situation of multiple training viewpoints. Multiple
experiments on the MVAR-Unity3D Attack (a simulated dataset
using the Unity3D software) were performed to individually
evaluate the effect on each type of variations. The results indi-
cated that the method is accurate and robust to the variations in
subject scale, subject position, action speed, partial occlusion,
and background. Other experiments on the recorded realistic
MVAR-GoPro Standing Exercise dataset also verified that the
proposed method is capable of maintaining its accuracy under
a wide range of viewpoint changes. The invariant range was
about 65 deg in the simulated dataset, and 45 deg in the realistic
case. Additional experiments were performed on well-known
i3DPost and MuHAVi public datasets to verify the superiority
of the proposed method compared to state-of-the-art view-
invariant action recognition methods. For future work, it is
planned to enhance the method robustness to variations in
lighting condition, consider global spatio-temporal features, and

increase the ability to distinguish between single and combined
actions. In addition, the affined HOF and dimension selection
methods will be integrated into surgical workflow analysis
systems proposed in [2].

Acknowledgment

This research is supported by Otsuka Toshimi Scholarship
Foundation (2017-2019), and JSPS KAKENHI Grant Number
17K00372 (2017-2020).

References

[1] J.-H. Lee, “Human centered ubiquitous display in intelligent space,”
The 33rd Annual Conference of the IEEE Industrial Electronics Society
(IECON), pp. 22–27, 2007.

[2] D. T. Tran, R. Sakurai, H. Yamazoe, and J.-H. Lee, “Phase segmentation
methods for an automatic surgical workflow analysis,” International
Journal of Biomedical Imaging, vol. 2017, 2017.

[3] J. Zhang, H. P. H. Shum, J. Han, and L. Shao, “Action recognition from
arbitrary views using transferable dictionary learning,” IEEE Transactions
on Image Processing, vol. 27, no. 10, pp. 4709–4723, Oct 2018.

[4] J. Zheng, Z. Jiang, and R. Chellappa, “Cross-view action recognition via
transferable dictionary learning,” IEEE Transactions on Image Process-
ing, vol. 25, no. 6, pp. 2542–2556, June 2016.

[5] A. A. Chaaraoui, P. Climent-Pérez, and F. Flórez-Revuelta, “Silhouette-
based human action recognition using sequences of key poses,” Pattern
Recognition Letters, vol. 34, no. 15, pp. 1799–1807, 2013.

[6] W. Yang, Y. Gao, Y. Shi, and L. Cao, “Mrm-lasso: A sparse multiview
feature selection method via low-rank analysis,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 26, no. 11, pp. 2801–2815,
2015.

[7] J. Liu, G. Wang, L. Duan, K. Abdiyeva, and A. C. Kot, “Skeleton-
based human action recognition with global context-aware attention lstm
networks,” IEEE Transactions on Image Processing, vol. 27, no. 4, pp.
1586–1599, April 2018.

[8] C. Zhang, H. Zheng, and J. Lai, “Cross-view action recognition based on
hierarchical view-shared dictionary learning,” IEEE Access, vol. 6, pp.
16 855–16 868, 2018.

[9] N. Jia, V. Sanchez, and C. Li, “On view-invariant gait recognition: a
feature selection solution,” IET Biometrics, vol. 7, no. 4, pp. 287–295,
2018.

[10] X. Ben, P. Zhang, Z. Lai, R. Yan, X. Zhai, and W. Meng, “A general
tensor representation framework for cross-view gait recognition,” Pattern
Recognition, vol. 90, pp. 87 – 98, 2019.

[11] X. You, J. Xu, W. Yuan, X.-Y. Jing, D. Tao, and T. Zhang, “Multi-view
common component discriminant analysis for cross-view classification,”
Pattern Recognition, 2019.

[12] Y. Kong, Z. Ding, J. Li, and Y. Fu, “Deeply learned view-invariant
features for cross-view action recognition,” IEEE Transactions on Image
Processing, vol. 26, no. 6, pp. 3028–3037, 2017.

[13] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, “View
adaptive neural networks for high performance skeleton-based human
action recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2019.

[14] H. Rahmani, A. Mian, and M. Shah, “Learning a deep model for human
action recognition from novel viewpoints,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 3, pp. 667–681, March
2018.

[15] A. Kumar, G. Gupta, A. Sharma, and K. M. Krishna, “Towards view-
invariant intersection recognition from videos using deep network en-
sembles,” 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1053–1060, Oct 2018.

[16] D. Thapar, A. Nigam, D. Aggarwal, and P. Agarwal, “Vgr-net: A
view invariant gait recognition network,” 2018 IEEE 4th International
Conference on Identity, Security, and Behavior Analysis (ISBA), pp. 1–8,
Jan 2018.

[17] H. Zhan, B. Shi, L.-Y. Duan, and A. C. Kot, “Deepshoe: An improved
multi-task view-invariant cnn for street-to-shop shoe retrieval,” Computer
Vision and Image Understanding, vol. 180, pp. 23 – 33, 2019.

[18] Y. Wang, C. Song, Y. Huang, Z. Wang, and L. Wang, “Learning view
invariant gait features with two-stream gan,” Neurocomputing, vol. 339,
pp. 245 – 254, 2019.

[19] H. Chen, Z. Liu, C. Tanougast, and J. Ding, “Optical hyperspectral image
cryptosystem based on affine transform and fractional fourier transform,”
Applied Sciences, vol. 9, no. 2, 2019.

[20] A. Gardezi, U. Malik, S. Rehman, R. C. D. Young, P. M. Birch, and C. R.
Chatwin, “Enhanced target recognition employing spatial correlation
filters and affine scale invariant feature transform,” in Pattern Recognition
and Tracking XXX, vol. 10995, 2019.

[21] N. Xue, G. Xia, X. Bai, L. Zhang, and W. Shen, “Anisotropic-scale
junction detection and matching for indoor images,” IEEE Transactions
on Image Processing, vol. 27, no. 1, pp. 78–91, Jan 2018.

[22] H. Xia, T. Li, W. Liu, X. Zhong, and J. Yuan, “Abnormal event detection
method in surveillance video based on temporal cnn and sparse optical
flow,” in Proceedings of the 2019 5th International Conference on
Computing and Data Engineering, ser. ICCDE’ 19. New York, NY,
USA: ACM, 2019, pp. 90–94.

[23] S. L. Happy and A. Routray, “Fuzzy histogram of optical flow orienta-
tions for micro-expression recognition,” IEEE Transactions on Affective
Computing, pp. –, 2017.

[24] R. V. H. M. Colque, C. Caetano, M. T. L. de Andrade, and W. R.
Schwartz, “Histograms of optical flow orientation and magnitude and
entropy to detect anomalous events in videos,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 27, no. 3, pp. 673–682,
March 2017.

[25] L. d. l. Fuente-Tomas, B. Arranz, G. Safont, P. Sierra, M. Sanchez-
Autet, A. Garcia-Blanco, and M. P. Garcia-Portilla, “Classification
of patients with bipolar disorder using k-means clustering,” PLOS
ONE, vol. 14, no. 1, pp. 1–15, 01 2019. [Online]. Available:
https://doi.org/10.1371/journal.pone.0210314

[26] A. K. Dubey, U. Gupta, and S. Jain, “Comparative study of k-means
and fuzzy c-means algorithms on the breast cancer data,” International
Journal on Advanced Science, Engineering and Information Technology,
vol. 8, no. 1, pp. 18–29, 2018.

[27] S. Kant, T. Mahara, V. K. Jain, D. K. Jain, and A. K. Sangaiah, “Lead-
errank based k-means clustering initialization method for collaborative
filtering,” Computers and Electrical Engineering, vol. 69, pp. 598–609,
2018.

[28] G. Farnebäck, “Two-frame motion estimation based on polynomial ex-
pansion,” Image Analysis, pp. 363–370, 2003.

[29] H. Abdi and L. J. Williams, “Principal component analysis,” WIREs
Comput. Stat., vol. 2, no. 4, pp. 433–459, July 2010.

[30] N. Gkalelis, H. Kim, A. Hilton, N. Nikolaidis, and I. Pitas, “The i3dpost
multi-view and 3d human action/interaction database,” 2009 Conference
for Visual Media Production, pp. 159–168, Nov 2009.

[31] F. Murtaza, M. H. Yousaf, and S. A. Velastin, “Multi-view human action
recognition using 2d motion templates based on mhis and their hog
description,” IET Computer Vision, pp. 758–767, 2016.

[32] S. N. Punch, Human Males Pack. Unity Asset Store, 2017.
[33] Niandrei, Lake Race Track. Unity Asset Store, 2018.
[34] Explosive, RPG Character Mecanim Animation Pack Free. Unity Asset

Store, 2019.
[35] RockVR, Video Capture. Unity Asset Store, 2017.
[36] M. B. Holte, T. B. Moeslund, N. Nikolaidis, and I. Pitas, “3d human

action recognition for multi-view camera systems,” 2011 International
Conference on 3D Imaging, Modeling, Processing, Visualization and
Transmission, pp. 342–349, May 2011.

[37] S. Azary and A. Savakis, “Multi-view action classification using sparse
representations on motion history images,” 2012 Western New York Image
Processing Workshop, pp. 5–8, Nov 2012.

[38] A. Iosifidis, A. Tefas, and I. Pitas, “Multi-view action recognition based
on action volumes, fuzzy distances and cluster discriminant analysis,”
Signal Processing, vol. 93, no. 6, pp. 1445 – 1457, 2013, special issue
on Machine Learning in Intelligent Image Processing.

[39] G. Castro-Muñoz and J. Martı́nez-Carballido, “Real time human action
recognition using full and ultra high definition video,” 2015 International
Conference on Computational Science and Computational Intelligence
(CSCI), pp. 509–514, Dec 2015.

[40] B. Hilsenbeck, D. Münch, H. Kieritz, W. Hübner, and M. Arens, “Hierar-
chical hough forests for view-independent action recognition,” 2016 23rd
International Conference on Pattern Recognition (ICPR), pp. 1911–1916,
Dec 2016.

[41] Jingtian Zhang, Lining Zhang, H. P. H. Shum, and Ling Shao, “Arbitrary
view action recognition via transfer dictionary learning on synthetic
training data,” 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1678–1684, May 2016.

[42] F. Angelini, Z. Fu, Y. Long, L. Shao, and S. M. Naqvi, “Actionxpose:
A novel 2d multi-view pose-based algorithm for real-time human action
recognition,” CoRR, vol. abs/1810.12126, 2018. [Online]. Available:
http://arxiv.org/abs/1810.12126

[43] F. Angelini, Z. Fu, S. A. Velastin, J. A. Chambers, and S. M. Naqvi,
“3d-hog embedding frameworks for single and multi-viewpoints action
recognition based on human silhouettes,” IEEE SigPort, 2018.

[44] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” Computer Vision and Pattern
Recognition (CVPR), pp. 7291–7299, 2017.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[46] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 1, pp.
568–576, 2014.

[47] C. Orrite, M. Rodriguez, E. Herrero, G. Rogez, and S. A. Velastin,
“Automatic segmentation and recognition of human actions in monoc-
ular sequences,” 22nd International Conference on Pattern Recognition
(ICPR), pp. 4218–4223, 2014.

[48] N. Nida, M. H. Yousaf, A. Irtaza, and S. Velastin, “Instructor activity
recognition through deep spatiotemporal features and feedforward ex-
treme learning machines,” Mathematical Problems in Engineering, vol.
2019, pp. 1–13, 04 2019.

