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Fig. 1. Characteristics of an ordinary auto-encoder

Abstract—The auto-encoder method is a type of unsupervised
dimensionality reduction method. However, it is difficult to use
an ordinary auto-encoder for encoding a spatial pattern itself
because such ordinary one encodes an image and its spatially
dilated/reduced versions into descriptors far from each other.
This will be a problem when focusing on a pattern itself. To solve
this, we proposed a transform invariant auto-encoder based on a
cost function evaluating transform invariance. By the method, we
can extract a transform invariant descriptor from an input, but
we need an additional regressor to extract transform parameters
required to restore the input. In addition, the cost function
requires high computation cost by computational explosion when
considering multiple types of transforms.

In this publication, we propose a novel auto-encoder that
separates an input into a transform invariant descriptor and
transform parameters. The proposed method does not require
an additional regressor and it will overcome combinational
explosion. The proposed method can be applied to various
auto-encoders without requiring any special modules or labeled
training samples. By applying it to dilation transforms, we can
achieve a spatial pattern descriptor and its relative scale. By some
experiments, we demonstrate that the method can generate a pair
of a transform invariant descriptor and a set of parameters for
restoring the original input.

Index Terms—auto-encoder, unsupervised learning, machine
learning

I. INTRODUCTION

The auto-encoder method [1]–[3] is a type of dimensionality
reduction method. It can extract essential information from a
vector via general non-linear mapping. Moreover, a mapping

*This work was supported by JSPS KAKENHI Grant Number 18H03313.

from a vector to a descriptor representing essential information
can be automatically generated from a set of vectors without
any supervising information.

When encoding images by the auto-encoder method, a
descriptor of an image generally differs from that of a spatially
dilated version of the image as shown in Fig. 1, because
a pattern itself and its scale are inseparably embedded into
a descriptor. Although the denoising auto-encoder method
[4] can extract desired components from an input including
information to be ignored, it requires an ideal output for each
training sample when training an auto-encoder. Therefore, to
generate a descriptor representing a spatial pattern in an image
by such an auto-encoder, we need to normalize its scale in
the images prior to training the auto-encoder. However, such
a spatial normalization is generally difficult. For example,
the normalization of the appearances of various hand–object
interactions is not obvious and requires a pattern recognition
technique to automatically find the standard for each image.

We have proposed a transform invariant auto-encoder that
generates a descriptor invariant with respect to a set of
transforms [5]. By considering spatial dilations, the method
can generate a dilation invariant auto-encoder, which extracts
a typical spatial pattern without regard to its relative scale
(Fig. 2). Since the framework does not depend on a structure
of an auto-encoder, it can be applied to various auto-encoders
without requiring any special modules or labeled training
samples. By using the method, we can encode a spatial pattern
itself even if target images are difficult to label or normalize,
for example, the appearances of hand–object interactions.
However, it ignores a scale of the pattern. To estimate the scale
of the pattern, we had to introduce an additional inference
model.

In this paper, we propose a novel auto-encoder that separates
an input into a transform invariant descriptor and transform
parameters. It consists of a transform invariant encoder, the
corresponding decoder and a regressor of transform parameter
as shown in 3. The encoder, decoder and regressor can be
trained simultaneously and an external additional regressor
is not required. The proposed method can be applied to
various auto-encoders without requiring any special mod-
ules or labeled training samples. In addition, the proposed
method will overcome combinational explosion, which occurs
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Fig. 2. Characteristics of a dilation invariant auto-encoder
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Fig. 3. Characteristics of a proposed auto-encoder

a problem when training a transform invariant auto-encoder
for very widely various transforms. By applying it to dilation
transforms, we can achieve a spatial pattern descriptor and
its relative scale. By an experiment, we demonstrate that the
method can generate a pair of a transform invariant descriptor
and a set of parameters for restoring the original input.

II. ORDINARY AUTO-ENCODER

In general, an auto-encoder is so trained that the encoder–
decoder combination approximately restores an input in a
certain input set. It is formulated as a problem minimizing
a cost function Cord(E,D) defined as

Cord (E,D) =
∑
I∈S
‖I −D (E (I))‖22 , (1)

where S, E(·), D(·), and ‖·‖p denote a set of inputs, the
encoder, the decoder, and the `p norm, respectively.

To minimize Cord(E,D), the decoder should be able to
approximately restore an original vector I from its descriptor
E(I), which has a lower dimensionality than I . By training
the encoder E and the decoder D by minimizing Cord(E,D),
information sufficient to restore an original vector can be
extracted as a descriptor by the encoder. In this way, the auto-
encoder method can construct descriptors of vectors from just
a set of training vectors.

However, a descriptor of an image from an ordinary auto-
encoder includes both a spatial pattern and its position.

If images have a common spatial pattern at different posi-
tions, their descriptors are different.

III. TRANSFORM INVARIANT AUTO-ENCODER

We have proposed the transform invariant auto-encoder
method [5]. It is trained by minimizing the following cost
function;

Cold (E,D) =
∑
I∈S

λinv

∑
i

‖D (E (I))−D (E (Tθi (I)))‖22

+ λres min
θ
‖I − Tθ (D (E (I)))‖22 .

+ λspa

(
‖E (I)‖1
‖E (I)‖2

)2

,

(2)
where S and Tθ denote a set of training inputs and a transform
operator in the ignored transforms, respectively.

By minimizing the above cost function, we can achieve
an auto-encoder that is transform invariant and can restore
a pattern accurately. However, calculation of the function
may require high computation cost for various transforms
because the function includes minimization with respect to
the transform parameter θ.

IV. PROPOSED METHOD

We propose a new auto-encoder that separates an input into
a transform invariant descriptor and transform parameters. The
basic idea is relaxation of the minimization of the restoration
term (the third term in (1)) for the transform invariant auto-
encoder. To calculate the restoration term, it is required to find
the transform parameter θ giving the minimum. However, it is
generally difficult when a transform parameter is continuous
and high-dimensional. So, we propose a method to avoid
searching the concrete minimum on the whole transform
parameter space by using a weight function, which indicates a
transform parameter near to the minimum. The weight function
can be used as a regressor of a transform parameter for an
input. The weight function can be optimized simultaneously
with the transform invariant encoder and the corresponding
decoder.

A. Cost function

Searching the minimum can be replaced with optimization
of the weight function W (θ) as follows;

min
θ∈Θ

f(θ) = min
W (θ)≥0,

∫
Θ
W (θ)dθ=1

∫
Θ

f(θ)W (θ)dθ, (3)

where
f(θ)

def
= ‖I − Tθ (D (E (I)))‖22 . (4)

If the integral in the right side of (3) is near to the min-
imum, the weight function W (θ) will be large on a small
neighborhood of the minimum and almost zero otherwise.
This means that the weight function indicates the parameter
giving the minimum. Moreover, the weight function W can
be designed so that it can be optimized by gradient method
even if it is difficult to differentiate f(θ) itself. In addition, the



weight function W (θ) may depend on each input I . Therefore,
the function W can be minimized simultaneously with the
transform invariant encoder E and the corresponding decoder
D.

By considering continuous parameters, we can rewrite the
cost function for the transform invariant auto-encoder as
following;∑

I∈S
λinv

∫
Θ

‖D (E (I))−D (E (Tθ (I)))‖22 dθ

+ λres min
W

∫
Θ

‖I − Tθ (D (E (I)))‖22W (I, θ)dθ

+ λspa

(
‖E (I)‖1
‖E (I)‖2

)2

,

(5)

where W is optimized under the condition that 0 ≤ W (I, θ)
and

∫
Θ
W (θ)dθ = 1. By optimizing W for the total value

instead for only the restoration term, we can define a new
cost function as following;

C (E,D,W )
def
=∑

I∈S
λinv

∫
Θ

‖D (E (I))−D (E (Tθ (I)))‖22 dθ

+ λres

∫
Θ

‖I − Tθ (D (E (I)))‖22W (I, θ)dθ

+ λspa

(
‖E (I)‖1
‖E (I)‖2

)2

.

(6)

We train the transform invariant encoder E, the corresponding
decoder D and the transform parameter weight function W so
that they minimize the proposed cost function C (E,D,W ).

B. Calculation

For convenience of calculation, we suppose that the trans-
form parameter weight function W (I, θ) is a Gaussian func-
tion on the transform parameter space as follows;

W (I, θ) =
1

(2π)
D
2
∣∣ 1

2ΣI
∣∣ 1

2

e−
1
2 (θ−µI)T ( 1

2 ΣI)
−1

(θ−µI), (7)

where D denotes the dimension of a transform parameter and
Σ and µ denotes the scaled covariance matrix and the mean,
respectively.

We use the Monte Carlo method to calculate integrals in the
cost function (6). First, we define a utility function w(I, θ) as
follows;

w (I, θ)
def
= e−

1
2 (θ−µI)T Σ−1

I (θ−µI),

pI (θ)
def
=

1

(2π)
D
2 |ΣI |

1
2

e−
1
2 (θ−µI)T Σ−1

I (θ−µI),
(8)

where p means a probability density function of a Gaussian
distribution. W (I, θ) can be represented as

W (I, θ) = 2
D
2 w (I, θ) pI (θ) . (9)

By using the utility functions, we can approximately calculate
the restoration term, the second term in (6) as follows;∫

Θ

‖D (E (I))− Tθ (I)‖22W (I, θ) dθ

=2
D
2

∫
Θ

‖I − Tθ (D (E (I)))‖22 w (I, θ) pI (θ) dθ

≈2
D
2

N

∑
θn∼ND(µI ,ΣI)

‖I − Tθn (D (E (I)))‖22 w (I, θn) ,

(10)

where ND (µI ,ΣI) denotes the D-dimensional Gaussian dis-
tribution and N denotes the number of sampled parameters
{θn}. We minimize the cost function (6) by optimizing the
parameters µI and ΣI as functions of an input I . By using the
Monte Carlo method, we can avoid combinational explosion
when searching the minimum from whole possible transform
parameters. Similarly, we can calculate the invariance term, the
first term in (6), by the Monte Carlo method with the uniform
distribution of possible transform parameters.

V. EXPERIMENTS

We demonstrate the effectiveness of the proposed method
by experiments with a dilation invariant auto-encoder. On
the experiments, we supposed that a transform parameter θ
consisted of a logarithmic scale θs and the dilation operator
Tθ was defined as

(Tθ (I)) (x, y) = I
( x

e−θs
,
y

e−θs

)
, (11)

where I(x, y) denotes the value of the image I at the position
(x, y). As a range of scales, we supposed that 0.5 ≤ eθs ≤ 2.

As a transform invariant encoder, we used a neural network
consisting of a single CNN with 9 × 9 filter kernels and 16-
channel outputs following a max pooling with stride 2 and
a three-layer fully connected neural network (NN), where
each layer has 1500, 150, 30 outputs respectively. As a
decoder corresponding to the encoder, we used a three-layer
fully connected NN, where each layer has 150, 1500, 1024
outputs, respectively. As a regressor of µI and ΣI , which are
parameters of a transform parameter weight function, we used
a four-layer fully connected NN, where each layer has 256,
64, 16 and 2 outputs, respectively. The one of outputs is used
as one dimensional µI and the other one is used for generating
one dimensional ΣI . In addition, we used a hyperbolic tangent
as an activation function, which is placed between each pair
of layers.

Here, we demonstrate dilation invariant property of the
proposed method using experiments for digit patterns.

We trained an auto-encoder by minimizing (6) for digit
images generated by randomly dilating training images in
the MNIST database [6]. The auto-encoder was trained by
stochastic gradient descent (SGD) [6] with learning rate
1.0 × 10−4, and updated with every 10 samples that were
randomly extracted from the training images in the MNIST
database. We used the auto-encoder that were updated 10,000
times. Training the proposed auto-encoder took a little less
than 33 hours.



If we use the transform invariant auto-encoder trained by
minimizing (2), we need to discretize the tranform parameter
space beforehand because the parameter is essentially contin-
uous. With the proposed method, we do not have to design a
discretized parameter space beforehand because transformed
parameters are randomly sampled subject to the weight func-
tion when calculating the cost function (10).

As an example, we encoded and decoded training images
of some digits, which were used in training the auto-encoder.
The results are shown in Fig. 4, 5, 6 and 7. The first row of
each figure consists of dilated input images, where the dilation
ratios for each column are 0.5, 0.8, 1.1, 1.4, 1.7 and 2.0 (1.0
means the original scale in the MNIST database). The second
row consists of images generated by encoding an image, which
is placed on the corresponding column of the first row, and
decoding it. The third row consists of images generated by
dilating images in the second row with a mean transform
parameter µI estimated from a corresponding input image.
From the images in the second rows, decoded images for each
digit have almost similar shape to input images and they shares
an almost same scale even though input images have various
scales. This means that the proposed auto-encoder successfully
generated descriptors invariant for dilation transforms. In addi-
tion, the images in the third rows have a scale almost similar to
each corresponding input image. This means that the proposed
auto-encoder successfully extracted transform parameters from
training images.

We also applied the auto-encoder to test images which were
not used in training the auto-encoder. The results are shown
in Fig. 8, 9, 10 and 11. Similarly to the results from training
images, images in each second row shares an almost same
scale and original scales are approximately restored in the
corresponding third row. This means that the proposed auto-
encoder successfully extracted transform parameters from test
images.

VI. CONCLUSION

We proposed a novel auto-encoder that can separate an input
into a transform invariant descriptor and transform parameters.
By utilizing a transform parameter weight function and the
Monte Carlo method, we can apply it to transforms with
continuous parameters. And also we can avoid a problem
of combinational explosion when training a proposed auto-
encoder for various transforms. By an experiment, we showed
that the auto-encoder can encode a pattern independently of
its scale.

The framework of the proposed cost function can be applied
to temporal patterns and more various transforms such as
combination of spatial shifts, dilations and rotations. By using
the proposed auto-encoder, we can extract typical patterns
from complicated images, which does not have an obvious
normalization, such as hand-object interactions or motions.
This will be useful for interaction-based or motion-based
recognition.

Fig. 4. Results for a training image of “0”: Dilated input training images (first
row), images decoded from descriptors (second row) and decoded images
dilated with estimated scales (third row)

Fig. 5. Results for a training image of “5”: Dilated input training images (first
row), images decoded from descriptors (second row) and decoded images
dilated with estimated scales (third row)

Fig. 6. Results for a training image of “7”: Dilated input training images (first
row), images decoded from descriptors (second row) and decoded images
dilated with estimated scales (third row)

Fig. 7. Results for a training image of “8”: Dilated input training images (first
row), images decoded from descriptors (second row) and decoded images
dilated with estimated scales (third row)



Fig. 8. Results for a test image of “3”: Dilated input training images (first
row), images decoded from descriptors (second row) and decoded images
dilated with estimated scales (third row)

Fig. 9. Results for a test image of “4”: Dilated input training images (first
row), images decoded from descriptors (second row) and decoded images
dilated with estimated scales (third row)

Fig. 10. Results for a test image of “7”: Dilated input training images (first
row), images decoded from descriptors (second row) and decoded images
dilated with estimated scales (third row)

Fig. 11. Results for a test image of “9”: Dilated input training images (first
row), images decoded from descriptors (second row) and decoded images
dilated with estimated scales (third row)
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