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Introduction

- An object as a tool has its own function. The function
is closely related to how a human grasp it [1].

Can we estimate how to grasp an
object from the object itself?

It will be useful for object recognition
and robot manipulation.

[1] N. Kamakura, “Shape of hand and Hand motion”. Ishiyaku Publishers, 1989.
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e Xiong Lv et al., “RGB-D Hand-Held Object Recognition

Based on Heterogeneous Feature Fusion”,
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* |t estimates only an object label (not how to grasp it).
* All teacher labels must be given manually.




Training - Recall how a human
grasp it.

Our goal
0

Learn human interactions
without teacher labels.

to grasp it.



Proposed method

- We generate an interaction descriptor, a numeral
representation of a human grasping method.

- And then we make an inference model to learn the
relation between object and grasping method.
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Grasping image
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Grasping method is represented as a grasping image.

It consists of a depth image, hand mask and object
mask.

It is paired with the corresponding object image.




Capture of human’s grasping scene
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Alignment based on object
Tracking of point clouds of all frames by ICP
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Segmentation of a hand and an object

Just before changing the
number of regions, we segment
hand points / object points.
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Interaction descriptor
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Restored
grasping image

E and D are trained by minimizing restoration error
without teacher labels.

U

A descriptor represents essence of an input.




Shift invariant auto-encoder

An ordinary auto-encoder encodes shape and position.
But spatial shift in grasping images is not important.
We use shift invariant auto-encoder to encode a shape
itself. (descriptor includes shape information only)
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T. Matsuo, et al., “Transform invariant auto-encoder,” IROS 2017, https://doi.org/10.1109/IR0S.2017.



Structure of auto-encoder
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Objects and grasping types

Mug Cup Ball Spray Graspmg types

Training

Training images:
80scenes X 12kinds
=960

Test images:
80scenes X4kinds
=320




Restored grasping images

"

Images restored from
interaction descriptor

"wBL
w WL

» 1E

Input grasping images

mug :“‘15_
e Ak
ball | maE

* 3

Depth Hand  Object Depth Hand  Object
Interaction descriptor has approximate shape information

cup

»

»
AN 5

Spray




Distribution of interaction descriptors
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Inference model
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same object
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Structure of the inference model
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Recalled grasping images (train)

Input Recalled grasping image 1 Correct grasping image
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The inference model successfully recalls grasping images.




Recalled grasping images (test)
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The model approximately recalls hand region masks.




Recalled grasping images (test)
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Recall from images with/without an
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Recall from images with/without an
Important part
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Integration of recalled hand region
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Multiple grasping types for object

To see part-specific inference, we train auto-encoder
and inference model with below grasping types.

Grasping Grasping Grasping Grasping
type 1 type 2 type 1




Cluster 1

Cluster 2

Integrated hand region mask

Integrated hand Areal example  The integrated hand

region mask of grasping mask for cluster i is
defined as:
' Si (.X', y)
\(i l Ni (X, y)
S;(x,y): Sum of recalled
nand mask in the i-th cluster

N; (x,y): Number of non-
zero at (x,y) of recalled
nand mask in the i-th cluster

.

Integrated hand region mask indicates hand region
when human grasps the object.




Cluster 1

Cluster 2

Integrated hand region mask

Integrated hand Areal example  The integrated hand
region mask  of grasping mask for cluster i is
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Integrated hand region mask indicate hand region
when a human grasps the object.




Conclusion

- We proposed a method to recall grasping method
from an object. It is based on:

* Interaction descriptor by shift invariant auto-encoder
We can generate numeral representation of grasping
method without teacher labels.

* Inference model by CNN
The relation between object shape and grasping method
can be modeled by utilizing interaction descriptor.

- The proposed method can estimate hand region for
grasping an object from the object itself.

- The proposed method will be useful for robot
manipulator.




Distribution of descriptors

from shift invariant auto-encoder
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Example for hand-object interaction
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Example for hand-object interaction
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