

Transform Invariant Auto-encoder

Tadashi Matsuo, Hiroya Fukuhara, Nobutaka Shimada Ritsumeikan University

Auto-encoder

A method reducing dimensionality with keeping restoration accuracy

Input image IDescriptor E(I)Restored image D(E(I)) 32×32 30 32×32

E and *D* can be trained by minimizing **restoration error** without teacher labels. $\sum \|D(E(I))\|$

A descriptor represents essence of an input. 2

 $-I \|_{L^2}^2$

Shift variance of ordinary auto-encoder

Each descriptor implicitly includes shape information. It is inseparably mixed with positional information.

A problem of ordinary auto-encoder

Can we assign similar descriptors to images with common shape without prior normalization?

If an auto-encoder is **shift invariant**, a descriptor represents a shape itself without regard to its position.

Shift invariant auto-encoder

Shift invariant auto-encoder

Seyond Borders

Shift invariant auto-encoder

Evaluation of shift invariance

Evaluation of restoration

Proposed objective function

$$C(E,D) = \lambda_{inv}C_{inv}(E,D) + \lambda_{res}C_{res}(E,D) + \lambda_{spa}C_{spa}(E)$$

Invariance term $C_{inv}(E, D)$ $\sum_{I} \sum_{\theta} \left\| D(E(I)) - D(E(T_{\theta}(I))) \right\|_{L2}^{2}$

Restored image should be unchanged even if inputs are transformed with any parameter.

Restoration term $C_{res}(E,D)$ — $\sum_{I} \|D(E(I)) - T_{\widehat{\theta}(I)}(I)\|_{L2}^{2}$

Von

Restored image should match with one of transformed images.

Sparseness term $C_{spa}(E)$

Descriptor E(I)should be a sparse vector.

Example structure of auto-encoder

Example for hand-object interaction

Example for hand-object interaction

Images restored by an ordinary auto-encoder

Bord

eyon

Images restored by a shift invariant auto-encoder

Estimation of shift parameter

We can obtain shift estimator by training neural network with pairs of an input and its best shift. 16

Example of decomposition by shift invariant auto-encoder

Restored images shifted

Inputs

by estimated shifts

D(E(I))

Shape only

Position and shape

An input *I* can be decomposed into

shape descriptor E(I) and shift parameter R(I)

Example of human hand imitation

Example of human hand imitation

Even if the hand moves, restored images are fixed because of shift invariance.

Joint angles of imitating robot hand were successfully estimated from the descriptors.

Conclusion

We proposed transform invariant auto-encoder that can extract invariants as a descriptor.

Shift

Shape is invariant.

- The invariance is realized by objective function on training.
- An input can be decomposed into invariant components and variant components.

Future work

- Computation cost for multiple types of transform
- Applying other transforms, such as scaling, rotation and blurring

Trained interactions

Interaction Image (32*32*2ch)

Extraction of foreground pattern from complex background

The proposed method can be applied to extraction of foreground pattern. Foreground patterns have many variation like hand-written numbers.

Foreground auto-encoder

By considering invariance to background alteration, we can generate a descriptor of foreground pattern itself.

eyond Bordei

Example of foreground extraction

Restored

image

Truth

Dependency of background

Results for images with indoor scene background

An encoder trained with noisy background cannot extract images with indoor scene background.

Example for indoor background

Borde

Beyond

Beyond Border

Extraction from images with indoor scene background

Hand written number on flyer

Border

Beyond

Using shift invariant auto-encoder

Using PCA

RGB image Depth image

(input)

Restored depth image

Imitating robot hand

Restored depth image

Imitating robot hand

Error of angles of fingers PCA+NN **Direct CNN** 1.0 SIAE+NN 0.8 Ratio 0.6 ().4 0.2 -120 (80)-60 120 180 60 ()Error [degree] 31

Border Beyond

Error of wrist angles PCA+NN **Direct CNN** 1.0 SIAE+NN 0.8 Ratio 0.6 0.40.2 -120120 180 -180 -60 () 60 Error [degree] 32

Beyond Border

Structure of auto-encoder for hand descriptor

まとめ

変換に関して不変な成分のみを表す descriptorを出力するauto-encoderを提案

Bord

eyond

- 入力を(不変量、変換パラメータ)のペアに分解可能 課題
 - 複数種類の変換を組み合わせた際の計算量 増加に対する対処
 - 拡大縮小や回転、blurなどの変換への適用

35

Example of document

Beyond

þđ	₽đ	ed	þđ	ed	₽đ	₽đ	₽đ	₽đ	₿đ	₿đ	₽đ	þđ	ed	₽đ	₽đ
ed	₽đ	ed	₽đ	₽đ	₽đ	₽đ	₽đ	₽đ	₽đ	₽đ	₽đ	₽đ	₽đ	₽đ	₽đ
ed	þđ	ed	þđ	ed	þđ	þđ	þđ	þđ	₽đ	₽đ	ed	ed	ed	ed	ed
in	in	in	in	in	in	in	in	in	in						
in	in	in	in	in	in	in	in	in	in						
in	in	in	in	in	in	in	in	in	in						
e '	e '	e '	e ·	e ·	e ·	e ·	e	e	e	e	e	e	e	e	e
e	e	e	e	e	e	e	e	e	e	e	e	e	e	e	e
e	e	e	e	e	e	e	e	e	e	e	e	e	e	e	e

By applying mean shift clustering to descriptors, we obtained clusters corresponding to pairs of characters.

[1] Max Jaderberg, Karen Simonyan, Andrew Zisserman and Koray Kavukcuoglu.

"Spatial Transformer Networks", arXiv:1506.02025 (2015).

Destination of shift

the strengths of transfer learning s Most impressiv Above image represents a histogram of $\begin{bmatrix} x \\ v \end{bmatrix} + R(I_{x,y})$, where $I_{x,y}$ means a 32 × 32 patch extracted at $\begin{bmatrix} x \\ y \end{bmatrix}$.

(brighter red means more frequent.

Bord

We do not give information of each characters. However, histogram seems to highlights positions of typical patterns.

Destination of shift

(brighter red means more frequent.

We do not give information of each characters. However, histogram seems to highlights positions of typical patterns.

shift invariant and background alteration invariant auto-encoder

