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1. Introduction

The auto-encoder method [1], [2], [4] is a type of unsu-
pervised dimensionality reduction method. When encod-
ing images by the auto-encoder method, a descriptor of
an image generally differs from that of a spatially shifted
version of the image as shown in Fig. 1 because a pattern
itself and its position are inseparably embedded into a
descriptor. Although the denoising auto-encoder method
[6] can extract desired components from an input includ-
ing information to be ignored, it requires an ideal output
for each training sample when training an auto-encoder.
Therefore, we need to normalize a position of an image to
represent a pattern itself by such a descriptor. However, it
is difficult to determine a standard position for normaliz-
ing images with complex boundaries such as hand images.
In addition, if an image includes an unknown background,
its descriptor may not accurately represent the image. We
propose a transform invariant auto-encoder that outputs
a descriptor invariant to some transforms such as shift and
change of background. In this publication, by using the
transform invariant auto-encoder, we generate a descrip-
tor that represents a pattern itself without positional nor-
malization even if target images include shifted variations
and unknown backgrounds. By applying the proposed
method to spatial shifts, we can generate an auto-encoder
that separately extracts a descriptor of a pattern and a po-
sition of the pattern, where the descriptor is independent
of shifts and it represents the pattern itself. By applying
the proposed method to transforms that change contents
of a background region, we can generate an auto-encoder
that extracts a descriptor of a foreground region and a
mask of the region from an image including an unknown
background.
In this publication, we generate a shift invariant and

background invariant auto-encoder as an example of the
transform invariant auto-encoder. By some experiments,
we demonstrate that a descriptor by the auto-encoder rep-
resents a pattern independent of its position and a back-
ground.

2. Ordinary auto-encoder

In general, an auto-encoder is so trained that the
encoder–decoder combination approximately restores an
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(a) An ordinary auto-encoder
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(b) A shift invariant auto-encoder

Fig. 1 Characteristics of auto-encoders

input in a certain input set. It is formulated as a problem
minimizing a cost function Cord(E,D) defined as

Cord (E,D) =
∑
I∈S

∥I −D (E (I))∥22 , (1)

where S, E(·), D(·), and ∥·∥p denote a set of inputs, the
encoder, the decoder, and the ℓp norm, respectively.
To minimize Cord(E,D), the decoder should be able to

approximately restore an original vector I from its de-
scriptor E(I), which has a lower dimensionality than I.
By training the encoder E and the decoder D by min-
imizing Cord(E,D), information sufficient to restore an
original vector can be extracted as a descriptor by the
encoder. In this way, the auto-encoder method can con-
struct descriptors of vectors from just a set of training
vectors.
However, a descriptor of an image from an ordinary

auto-encoder includes both a spatial pattern and its posi-
tion.
If images have a common spatial pattern at different

positions, their descriptors are different.

3. Transform invariant auto-encoder

As a method to construct a descriptor representing a
spatial pattern, we propose a transform invariant auto-
encoder. With the proposed method, close descriptors
are allocated to two inputs if they are mapped to each
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other by a certain set of transforms. We call the set “ig-
nored transforms”. A transform invariant auto-encoder is
generated by training an auto-encoder with a novel cost
function. The cost function should induce the accurate
restoration of a pattern as well as transform invariance.
We achieve such an cost function by adding a transform
variance term and relaxing the restoration error term.

3.1 Transform variance term
As a measure of the transform variance, we propose a

sum of differences between a restored image and an image
restored from a transformed input as follows:

Cinv(E,D)
def
=

∑
I∈S

∑
i

∥D (E (I))−D (E (Tθi (I)))∥
2
2 ,

(2)

where S and Tθ denote a set of training inputs and a trans-
form operator in the ignored transforms, respectively. To
minimize (2), the combination of the encoder E and the
decoder D need to output similar vectors for variously
transformed versions of an input. By optimizing the en-
coder E and the decoder D so that they minimize (2),
their combination is approximately transform invariant
for inputs in the set S.

3.2 Restoration error term
To compare patterns without respect to ignored trans-

forms, we need to relax the restoration error cost in (1) so
that it will be small if a restored input matches a trans-
formed version of its original input. Therefore, we pro-
pose the following term as a measure of the accuracy of
the restoration of a pattern:

Cres(E,D)
def
=

∑
I∈S

min
i

∥Tθi (I)−D (E (I))∥22 . (3)

To minimize (3), the restored image D(E(I)) should
approximately match one of the transformed inputs
{Tθi(I)}. This means that the pattern should be approx-
imately restored.

3.3 Cost function
Our total cost function C(E,D) is formulated as fol-

lows;

C (E,D)
def
=λinvCinv (E,D) + λresCres (E,D)

+ λspa

∑
I∈S

(
∥E (I)∥1
∥E (I)∥2

)2

,
(4)

where λinv, λres, and λspa denote the scalar weights of
each term. The third spatial sparseness term causes that
similar inputs are encoded into descriptors close to each
other[5]. We train the encoder E and the decoder D so
that they minimize the proposed cost function C (E,D).

4. Inference of transform parameter

We propose an inference method of a transform pa-
rameter which is ignored by a transform invariant auto-
encoder. We define a transform parameter of an input I

as a parameter representing a transform from the input
I to the restored input D(E(I)). For example, a trans-
form parameter for a shift invariant auto-encoder means
a spatial shift.
An input can be approximately restored from its de-

scriptor and transform parameter. Therefore, a pair of
a transform invariant auto-encoder and the correspond-
ing inference model of a transform parameter is an auto-
encoder that can represent an input as a pair of a trans-
form invariant part and a transform variant part.
We propose the following cost function to train an in-

ference model R of a transform parameter.

Cpar(R) =
∑
I∈S

∥∥∥∥R (I)− argmin
θ

∥I − Tθ (D (E (I)))∥22

∥∥∥∥2

2

.

(5)

We can achieve an inference model R of a transform pa-
rameter by minimizing Cpar(R).

5. Segmentation based on transform in-
variant auto-encoder

We apply the proposed transform invariant auto-
encoder to segmentation of a foreground from an image
with a complex background. Since a foreground is invari-
ant with respect to transforms that change contents of a
background region, we can generate a transform invariant
auto-encoder that extracts a foreground from an image.
In this case, there exist extremely many transforms to

be ignored. Since the invariance term Cinv in (2) means
the constraint that the encoder and decoder should be in-
variant with respect to a set of transforms, the effect of the
term can be approximated by calculating the term with a
subset of ignored transforms. Here, we calculate the in-
variance term Cinv with transforms randomly selected for
each sample in each training step.
On the other hand, the restoration term Cres in (3)

means the constraint that a vector restored from an input
should be close to one of vectors transformed from the
input. For convergence of training, the set of the trans-
formed vectors should be fixed for each input. In addition,
vectors restored from similar inputs should be compared
with similar transformed vectors. Therefore, instead of
randomly selected transforms, we calculate the restora-
tion term with a representative transform that changes
values on the background to 0.
Finally, we propose the following cost function for seg-

mentation.

Cseg (E,D)

def
=

∑
I∈S

λinv

∑
random θ

∥D (E (I))−D (E (Tθ (I)))∥22

+ λres

∥∥T̃0 (I)−D (E (I))
∥∥2

2

+ λspa

∑
I∈S

(
∥E (I)∥1
∥E (I)∥2

)2

,

(6)

where T̃0 means the transform that changes values on the
background to 0.
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Fig. 2 An image in MNIST

and its shifted versions

Fig. 3 Images restored

using an ordinary

auto-encoder

Fig. 4 Images restored

using a shift invariant

auto-encoder

Fig. 5 Images restored using a

shift invariant auto-

encoder with inferred shifts

6. Experiments

6.1 Experiments for pattern representation
We demonstrate the effectiveness of the proposed

method by experiments with a shift invariant auto-
encoder. The shift operator Tθi is defined as

(Tθi (I)) (x, y) = I(x+∆xi, y +∆yi), (7)

where I(x, y) denotes the value of the image I at the po-
sition (x, y). We used the following shift parameters:

{(∆xi,∆yi)} = {−8,−6,−4,−2, 0, 2, 4, 6, 8}2 . (8)

Here, we demonstrate shift invariant property of the pro-
posed method using experiments for digit patterns.
As an encoder, we used a neural network consisting of

a single convolutional neural network (CNN)[3] following
a three-layer fully connected neural network (NN). As a
decoder, we used a three-layer fully connected NN. In
addition, we used a hyperbolic tangent as an activation
function, which is placed between each pair of layers. We
generated two pairs of encoders and decoders with the
same structure. One was trained as an ordinary auto-
encoder by minimizing (1), and the other was trained
as a shift invariant auto-encoder by minimizing (4) for
digit images in the MNIST database [3]. For the ordinary
auto-encoder, we used additional images that were ran-
domly shifted according to the parameters in (8). Both
auto-encoders were trained by stochastic gradient descent
(SGD) [3], and both were updated with every 50 samples
that were randomly extracted from the MNIST database.
We used auto-encoders that were updated 100,000 times.
We also trained an inference model R of a shift parame-
ter. The inference model consisted of a three-layer fully
connected NN.
As an example, we encoded and decoded an image of

the digit “2”, which is not used in training auto-encoders.
Input images are shown in Fig. 2, where the center image
is the original image in the MNIST database and the oth-
ers are its shifted versions. Images in Fig. 3 are restored
from images in Fig. 2 using an ordinary auto-encoder. Im-
ages restored by a proposed shift invariant auto-encoder
are shown in Fig. 4. Fig. 5 shows the restored images
which are shifted according to the shift parameters esti-
mated by the inference model R. In Fig. 3, the restored

-1.5

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5  0  0.5

-0.58

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

-0.4 -0.2  0  0.2

(a)by an ordinary (b)by an shift invariant

auto-encoder auto-encoder

Fig. 6 The distribution of descriptors of shifted images

images are located depending on the shifts in the input
images. Conversely, the restored images in Fig. 4 are very
similar to each other. This means that the proposed shift
invariant auto-encoder can encode an input image of the
digit “2” into a descriptor representing the typical spatial
shape of the digit “2” without regard to shifts in the input
image.
In addition, we calculated the distributions of the de-

scriptors from the shifted images. We encoded the digit
images corresponding to “2”, “5”, and “7” and their
shifted versions using the two auto-encoders. Fig. 6(a)
shows the distributions from the ordinary auto-encoder,
and Fig. 6(b) shows those from the shift invariant auto-
encoder. In these figures, 30 dimensional descriptors are
projected onto a two-dimensional space spanned by the
three mean vectors of the descriptors for each digit. By
comparing these figures, we see that descriptors generated
by the shift invariant auto-encoder are obviously concen-
trated for each digit. With a shift invariant auto-encoder,
descriptors from shifted images of the same digit are close
to each other and descriptors from shifted images of other
digits are far from each other. This means that a descrip-
tor generated by a shift invariant auto-encoder represents
the spatial pattern. In addition, descriptors in Fig. 6(b)
make clusters corresponding to digits, even though we
have entered no digit information when training the shift
invariant auto-encoder. The proposed method may be ap-
plicable to the unsupervised clustering of images based on
their spatial patterns.

6.2 Experiments for segmentation
We demonstrate an auto-encoder that extracts a fore-
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Fig. 7 A training sample and transformed images for segmen-
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Fig. 8 Segmentation of images with noisy background

ground from a MNIST image with a noisy background.
We generated the training samples by adding a random
background generated by Gaussian white noise, where the
values on the foreground is near to 1, the mean of the noise
is 0.5 and the standard deviation of the noise is also 0.5.
In Fig. 7, we show a training sample and transformed im-
ages used in (6). We trained an auto-encoder with the
structure similar to that in 6.1 so that it minimizes the
proposed cost function (6).
After training the auto-encoder, we encoded some im-

ages not used in the training process and restore images by
the decoder. The restored images are displayed in Fig. 8.

We also generated another auto-encoder trained with
images with backgrounds randomly selected from indoor
scenes. When generating training samples, we converted
values on a foreground from 1 to 0.5 so that the foreground
cannot be easily segmented by absolute values of pixels.
In Fig. 9, we display images restored from those not used
in the training process. Although details of the digits “2”
and “5” are not so accurately restored, their whole forms
are roughly restored. The forms of the other digits are
approximately segmented from images without regard to
their backgrounds.
These results show that the auto-encoder successfully

Input image
Restored

image

Ground 

truth
Input image

Restored

image

Ground 

truth

Fig. 9 Segmentation of images with random scene background

segments approximate forms of digits as foregrounds.

7. Conclusion

We proposed a transform invariant auto-encoder and
demonstrated a shift invariant auto-encoder and a back-
ground invariant auto-encoder. By several experiments,
we showed that they can encode a pattern independently
of its position and a background, respectively. By com-
bining their cost function, we will be able to generate an
auto-encoder that encodes a typical foreground without
regard to its position and background.
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