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Abstract. This paper proposes an automatic functional object segmen-
tation method based on modeling the relationship between grasping hand
form and the object appearance. First the relationship among a repre-
sentative grasping pattern and a position and pose of a object relative
to the hand is learned based on a few typical functional objects. By
learning local features from the hand grasping various tools with vari-
ous way to hold them, the proposed method can estimate the position,
scale, direction of the hand and the region of the grasped object. By
some experiments, we demonstrate that the proposed method can detect
them in cluttered backgrounds.

1 Introduction

Generic object detection from image classifies the image subregions into object
“categories”, which is more difficult task than specific object detection. Since the
target objects in one category have large variations of appearance in many cases,
the framework which can detect targets even in clutter backgrounds and partial
occlusions with other objects is required. Recently many machine-learning-based
detection methods using structured local image features like Bag-of-features or
graphical model are proposed. As a survey paper of image-based object detection
by Zhang [22] such structural feature models are divided into “window-based”
model like HoG (histogram of gradient) feature and “part-based” model like
Implicit Shape Model [9]. While the former tends to be weak to large occlusion
the latter gives comparatively good performance for it since it models loose con-
nections between local features as parts of the object: boosting detector using
edgelet feature [19], voting-based-detector using partial contourlet [17], constel-
lation model based on SIFT local feature [21], 3-D shape constellation model
using RGB-D cam [11] and conditional random field of dense label map of object
region [18].

While the above methods detect objects using only image feature or appear-
ance information, literature points out that the object category is defined by not
simply appearance or shape but also its “function” [14]. From that viewpoint it
is decisively important what kind of dynamical actions the 3-D shape of each
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part generates. Base on the assumption that the dynamical action of a common
partial shape of one object category gives the object function unique for the
category, [16] builds a graphical model of the 3-D partial shape and infers the
object category.

This paradigm is reduced to “affordance” [4] since most of artificial objects
assume human manipulations and are designed as tools with specific functions.
Affordance means that the object shape reminds the usage of the object, that is
how human physically uses the objects. The usage model requires the pairwise
descriptions of the relative poses and motions of both human and the object.
Gupta [6] shows an representative example of discrimination of PET bottle and
spray can which have quite similar shape. It points out that they can be dis-
criminated by considering the usage: drinking pose and motion for PET bottle
and targeting pose and button pushing for spray can. This framework can be
applied to object categories that include large shape or appearance variations.
There are some researches on this framework: recognition of function as “chair”
by 3-D human action simulation with the object shape [5], estimation of used
objects in cooking scene by considering human motion [20], and object recogni-
tion by learning the relationship between object arrangement in the living room
environment and human actions [7].

While these researches consider the macro-size poses and motions of human
body, Gupta [6] refers an interesting suggestion reported in psychological field [2],
which points out that when human recognizes the function of an object he/she
often reminds the hand gesture grasping the object to be recognized. This means
that the grasping details is necessary to categorize handy-size objects. Pieropan
et al. [13] models the typical hand motion and position by clustering and iden-
tifies the functional object categories (tool, ingredient, support area, container).
This research mainly considers only upper body and hand motions, not grasping
details.

The literature revealed that human carefully selects the grasping patterns
when using an object by considering the function to be invoked [8,12], for exam-
ple, “Lat” type (intermediate grip: lateral grip) for a mug cap, and “PoD” type
(power grip: distal type) for scissors. A recent research employs this grasping
description for categorizing objects by building a graphical model describing the
relationship between object-hand contacting point, object’s appearance and the
human’s motion [3]. In the research the appearance of the specific object and
its grasping hand are directly bound. In general, it requires too high costs to
individually collect such combinations between object and grasping for various
objects. The object appears in various size, orientation and position in an image.
If the object shape depends on the object function (thus on the grasping type),
the image patterns of the grasping hand can be a strong cues for the detection
of a corresponding object category. After the detection of the typical grasping
patterns in the image, the hand-object coordinate unique for each grasping type
can be estimated and the scale-position-orientation normalized object regions
can be automatically collected from the image database or live videos. In addi-
tion once the normalized object appearance or shape model is built for each



Automatic Image Collection of Objects with Similar Function 5

grasping pattern, the object function can be inferred by estimating the grasping
pattern through the object-grasping-function relationship model. In this paper
we focus on such an approach for hand-object-function model building.

In this paper, first the relationship between representative grasping patterns
and object position and pose relative to hand is learned based on a few typical
functional objects. Then based on the obtained object-grasping model the regis-
tered grasping pattern is automatically detected in the still image with cluttered
background, the hand-object coordinate is attached onto the image region, the
normalized object region is segmented and collected. The detail algorithm and
the experimental results for this framework are shown.

2 Detecting Wrist Position with Randomized Trees

2.1 Training of Randomized Trees Model Providing the Probability
Distribution of Wrist Positions

Randomized Trees (RTs) [10] is a multi-class classifier that accepts multi-
dimensional features and it provides probability distributions over the class
indexes. Here we construct RTs that can generate a probability distribution
of a wrist position from Speeded-Up Robust Features (SURF) [1] features.

First, we specify a wrist position for each training image with a simple back-
ground by hand as shown in Fig. 1(a). To learn relation between a wrist position
and a set of SURF features as shown in Fig. 1(b), we introduce a local coor-
dinate system for representing a wrist position relatively. It is defined by the
position, scale and orientation of the corresponding SURF feature as shown in
(Fig. 1(c)). By using such a local coordinate system, a relative position of a wrist
can be trained without depending on a position, scale or orientation of a hand
in a training image. Since RTs generate a probability distribution of a discrete
variable, a local coordinate space is segmented into finite number of blocks by
a grid and a wrist position is represented by a block including the position as
shown in Fig. 1(c). We assign a label for each block and assign a special label the
condition that a wrist exists on the outside of all blocks. A position of a wrist
can be represented by a pair of a label and a SURF feature. To estimate a label
from a SURF descriptor, we train RTs so that they can calculate a probability
distribution of such a label from a 128 dimensional SURF descriptor.

A label j is an index that means a block or background (the outside of all
blocks). A local region of a SURF feature is divided into some square blocks.
Each block is denoted as Cj . The j-th block Cj is a region on a local coordinate
space defined as

Cj =
{[

u
v

]∣∣∣∣ |u − uc(j)| < Sblock/2, |v − vc(j)| < Sblock/2
}

, (1)

where (uc(j), vc(j))t denotes the center of the Cj and Sblock denotes the size of
a block.
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Fig. 1. A local grid for representing a wrist position relatively

When a wrist position is xwrist = (xwrist, ywrist)
t and a SURF feature f is

detected on a hand, a label j of the SURF feature f is defined as a block index
j such that Tf (xwrist) ∈ Cj , where Tf denotes a normalization into the local
coordinate based on the position, scale and direction of the SURF feature f .

A label of a SURF feature detected on background is defined as a special
index jback and it is distinguished from block indexes.

To learn the relation between a SURF feature f and its label j, we collect
many pairs of a SURF feature and its label from many teacher images where the
true wrist position is known. Then, we train Randomized Trees with the pairs
so that we can calculate a probability distribution P (j|f).

2.2 Wrist Position Detection Based on Votes from the Probability
Distribution of Wrist Positions

A wrist position is estimated by “voting” on the image space, based on the
probability distribution P (j|f) learned with the Randomized Trees. The votes
function Vwrist(x, y) defined as

∑
f for all SURF features Vf (x, y), where

Vf (x, y) =

{
P (j = j̃|f) if ∃Cj̃ s.t. Tf (x, y) ∈ Cj̃ ,

0 (otherwise) ,
(2)

and P (j|f) is a probability distribution calculated by the trained Randomized
Trees.

The position with the maximum votes, arg max
x,y

Vwrist(x, y), is considered as a

position suitable for a wrist. However, the global maximum may not be the true
position because the votes mean a local likelihood and global comparison of them
makes no sense. Therefore, we allow multiple candidates of wrist positions that
have locally maximum votes.
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Fig. 2. Flow of wrist candidate detec-
tion (Color figure online)

Fig. 3. Flow of wrist position detection

To find local maxima without explicitly defining local regions, we use mean-
shift clustering. Seeds for the clustering are placed at regular intervals in the
image space as shown in Fig. 2(a), where a blue point denotes a seed. a green
point denotes a trajectory, a red point denotes a limit of convergence and a green
and blue circle denotes the first and second wrist candidate, respectively. The
image space is clustered by limit positions of convergence (Fig. 2(b)). For each
cluster, the position with the maximum votes is taken as a candidate (Fig. 2(c)).

If a background region is larger than a hand region, the above voting is
disturbed by SURF features on the background. To overcome this, we roughly
distinguish SURF features on a hand from those on the other region by a Sup-
port Vector Machine (SVM). The SVM classifies a SURF feature into two classes,
which are “hand” and “background”. Teacher samples for the “hand” class are
extracted from images where a hand is placed on a simple background. Those for
the “background” class are extracted from images consisting of a complex back-
ground. The above voting algorithm is performed with SURF features classified
as the “hand” class.

An example of finding candidates is shown in Fig. 3. First, SURF features
are extracted from an input image (Fig. 3(a)). By using a SVM, they are roughly
classified and SURF features apparently originated from non-hand regions are
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excluded (Fig. 3(b), (c)). For each SURF feature f , local coordinate is defined
and a conditional probability distribution P (j|f) is calculated by a Randomized
Trees (Fig. 3(d), (e)). By voting based on the probability distribution, candidates
of wrist positions are determined (Fig. 3(f), (g)).

3 Extraction of Hand and Object Regions

We extract hand and object regions by using relation with local features. Its
rough process of training is following;

1. Generate training samples of pairs of an object center and a set of SURF
features on a hand (the Sect. 3.1).

2. Train the Randomized Trees so that outputs a probability distribution of an
object center from a pair of a wrist position and a SURF feature on a hand
(the Sect. 3.2).

3. Train a one-class SVM [15] for finding an object region and the other one-
class SVM for distinguishing whether a SURF feature is on a hand region or
not (the Sect. 3.3).

The rough process of detection is following;

1. Estimate a wrist position by the method in the Sect. 2.
2. Estimate an object center by voting probabilities generated from the RTs

trained at the training step 2. All SURF features take part in the voting.
3. Find an object region by the one-class SVM trained at the step 3. Distinguish

SURF features on a hand from those on the other regions by another one-class
SVM trained at the step 3.

3.1 Estimating an Object Center by Coarse Classification

A wrist position can be found by the algorithm described in the Sect. 2. In
addition to the wrist position, we use a center of gravity of an object, which
makes a coordinate system suitable for learning positional relation between a
hand and an object. For learning relation between the object center and a set of
features, we generate training samples by coarse classification of SURF features
extracted from images with simple backgrounds.

In an image of a hand grasping an object with simple background such as
Fig. 4(a), a SURF feature belongs to a hand class or an object class. We clas-
sify such features (Fig. 4(b)) into the two classes by K-means clustering. On the
clustering, each feature is represented by a triplet consisting of a coordinate
value (x, y) of the feature and its “likelihood as a hand part” h. As a mea-
sure of the likelihood, we take how much the feature contributed to Vwrist(x, y)
(Fig. 4(c)) used when determining the wrist position. The likelihood h of a SURF
feature f is defined as h = Vf (xwrist, ywrist), where (xwrist, ywrist) denotes the esti-
mated wrist position. An example of the likelihood are shown in Fig. 4(d). By
classifying triplets, we can extract a set of SURF features on a hand as shown in
Fig. 4(e). An object center is estimated as the average position of SURF features
on an object as shown in Fig. 4(f).
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Fig. 8. A result of feature classification

3.2 Learning Relation Between an Object Center and a Wrist
Position

By the method in the Sect. 3.1, we have training sample images where an object
center, a wrist position and a hand region are known. To represent a positional
relation between an object center and a wrist position, we take a grid defined by
a SURF feature, which is introduced in the Sect. 2.1. On the grid, the relation
can be represented by the positional difference between two blocks (Fig. 5). We
train RTs with the differences so that it can calculate a probability distribution
of a relative position of an object center from a pair of a wrist position and a
SURF feature.

By using the RTs similarly as the Sect. 2, an object center can be estimated.
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3.3 Learning One-Class SVMs for Finding an Object Region
and Features on a Hand

By using an object center and a wrist position, we can introduce a wrist-object
coordinate system (ξ, ν), where the origin is the wrist position, one axis ξ extends
to the object center and the distance between them is normalized as 1 (Fig. 6).
It is suitable for learning positional relation between a hand and an object.

We generate a one-class SVM Mobj that receives a coordinate value (ξ, ν) and
outputs true if the position is included in an object region. Since “likelihood as
an object part” cannot be estimated beforehand, we take a relative coordinate
value (ξ, ν) of a SURF feature on an object region as a positive sample. Such
a feature can be collected by the method in Sect. 3.1. An example of a object
region derived from trained Mobj is shown as the blue region in Fig. 7, where the
red point means the wrist position.

We also generate another one-class SVM Mhand for distinguishing SURF
features on a hand from those on other regions. The SVM Mhand is trained with
a set of a triplet (ξ, ν, h), where h means “likelihood as a hand part” defined in
Sect. 3.1.

We classify each SURF feature f as follows;

1. If the SVM Mhand returns positive for the triplet (ξ, ν, h) of the feature f , it
is classified as a hand feature.

2. If it is not classified as a hand feature and the SVM Mobj returns positive for
the pair (ξ, ν) of the feature, it is classified as an object feature.

3. Otherwise, it is classified as a background feature.

A result of feature classification is shown in Fig. 8 In addition, an image can
be divided into an object region and the other region because the SVM Mobj

requires only a position.

Fig. 9. A step-wise result of the proposed method
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4 Experimental Result

We apply the proposed method to an image with complex background. The
result images of each step of the method are shown in Fig. 9. In the input image
(Fig. 9(a)), SURF features are extracted as Fig. 9(b). They generate Vwrist(x, y)
as Fig. 9(c) and a wrist position can be estimated as (Fig. 9(d)). Although the
estimated wrist position is a little off the true wrist, an object center is found
correctly (Fig. 9(f)). By using the object center, the wrist position and the like-
lihood as a hand part (Fig. 9(g)), we can detect an object region and class of
each SURF feature as Fig. 9(h). Results for other images of a hand grasping a
cup are shown in Fig. 10. They show that object regions are extracted well if the
ways of grasping a cup are different.

handobject background

Fig. 10. Results for other images of a hand grasping a cup

(a) One of images
for training models

(b) Estimated posi-
tions

handobject background

(c) An object region and feature classes

Fig. 11. Results for images of a hand grasping scissors

A cup used on training

Fig. 12. Results for a hand grasping a cup not used on training
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A pair of scissors used on training

Fig. 13. Results for a hand grasping a scissors not used on training

We also show results of a hand grasping scissors in Fig. 11. RTs and SVMs
are trained with images such as Fig. 11(a). As shown in Fig. 11(b), an object
center and a wrist position are correctly estimated, even though the grasped
scissors differ from that in the training images. Object regions are also correctly
estimated as shown in Fig. 11(c).

In Figs. 12 and 13, we show results of a hand grasping an object which is
not used on training. The results show that the proposed method works well for
unknown objects by focusing on how they are grasped.

5 Conclusion

By integrating local features, a position of a hand can be estimated even if
its background is complex and the hand is partially hidden. With Randomized
Trees, a wrist can be found and a gravity center of an object can be estimated
from a set of the wrist and local features. The wrist and the object center make
a wrist-object coordinate system suitable for learning a shape of an object which
depends on how the object is grasped. In the future, we will try object recognition
by learning the relation between an object and a posture of a hand grasping it.
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