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Abstract. This paper proposes a novel method of estimating 3-D hand
posture from images observed in complex backgrounds. Conventional
methods often cause mistakes by mis-matches of local image features.
Our method considers possibility of the mis-match between each posture
model appearance and the other model appearances in a Baysian stochas-
tic estimation form by introducing a novel likelihood concept “Mistakenly
Matching Likelihood (MML)“. The correct posture model is discrim-
inated from mis-matches by MML-based posture candidate evaluation.
The method is applied to hand tracking problem in complex backgrounds
and its effectiveness is shown.

1 Introduction

Precise hand-finger shape estimation methods using visual cues have been devel-
oped [1][2][3][4][5][6] in order to implement the gestural interfaces in a touch-less
manner which are utilized in interaction with virtual environments and auto-
matic sign-language translation.

One of the difficulties of implementing the interfaces based on the hand shape
estimation exists in its situations where the interfaces are needed: its complex
backgrounds like colorful and textured clothes, skin-colored region as human
face and some desktops on which various tools and objects are scattered. Since
the hand shape even in simple backgrounds is a tough problem due to its great
varieties of posture, shape estimation with simultaneous segmentation is still a
challenging problem.

To solve the problem with feasible computing resources, some trials were re-
ported from the following two viewpoints: 1) how to reduce the number of posture
candidates to consider (i.e. how to predict the posture), 2) how to evaluate the
matching degree between the posture candidate and observed image features.

From the viewpoint 1), Active Shape Model [7] is proposed, which learns
acceptable shape deformations and tracks the region contour or texture assuming
smooth deformation and motion. Non-smooth deformation can be treated by
introducing Switching Linear Dynamics [8]. 3-D model-based shape prediction
and tracking, not based on appearance learning, is also proposed [5]. Most of
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(a) Estimation re-
sult

(b) Edges of estimation
result put on input image

(c) Shape similar
to input image

(d) Edges of similar shape
put on input image

Fig. 1. Mistake of conventional method Fig. 2. Corresponding of edges

those methods employ a parallel search scheme in tracking, like beam-search or
particle filter for robustness against temporal mis-estimation and tracking failure
[5][9][10][11][12][13][14].

While many improvements from the first viewpoint are reported, those from
the second viewpoint, concerned with the evaluation of matching degree, are
comparatively few and most implementations employ a simple feature corre-
sponding and evaluating method: chamfer matching [15][16]. Chamfer matching
makes correspondences between the features with the least distance in the im-
age, and evaluates the matching degree by the sum of the distances (chamfer
distance). This simple matching scheme, of course, causes often a wrong shape
estimate on the complicated backgrounds.

Fig. 1 is an example of wrong estimate of hand posture caused by chamfer
matching. Because many edge textures are observed in the hand region, the fin-
ger tips of the posture model are mistakenly corresponding to the inner edges
(see Fig. 2) and as a result its chamfer distance is evaluated too small. While
this problem is hard to avoid as long as using chamfer matching, no more ap-
propriate matching method is found other than chamfer matching. Therefore
the matching degree should be evaluated under the consideration of that such a
wrong matching often happens.

Nevertheless, the existence of the mismatch caused by chamfer matching does
not directly mean its uselessness. Embedding approach [15] evaluates the match-
ing degree between an input image feature and not only one posture model
but also several other reference models. For example of Fig. 1, in addition to
the correct posture candidate (c), the candidate (a) also has so high matching
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degree that (a) is picked up as the estimate. However, if only (a) has the high
matching degree when (a) should be the correct matching, these two cases can
be discriminated by evaluating the matching degrees with both reference models
(a) and (c). Since Embedding approach only uses an ad-hoc way by evaluating
the squared sum of the matching degrees of all reference models, its estimate is
not the optimum in Bayesian point of view.

This paper mathematically derives the Baysian form of Embedding approach.
In its derivation, a novel concept of likelihood is introduced: Mistakenly Matching
Likelihood (MML), which predicts the high evaluation caused by wrong matching
and gives the ability to discriminate the true estimate from the false match in a
stochastic way. The derived MML-based candidate evaluation is applied to hand
tracking problem in complex backgrounds and its effectiveness is experimentally
shown.

2 Acquisition of Typical Hand Posture Images

3-D Hand model used in our research is originally wireframe model. The model
is modified into a shaded model. The joint bending angles are denoted by
θb,t,1, θb,t,2, θb,t,3, θb,i,1, θb,i,2, θb,i,3, . . . and opening angles at a base joint of the
fingers are denoted by θo,t, θo,i, . . . (shown in Fig.3). The posture of the whole
hand model is represented by translation tx, ty, tz and Ritalin θr,x, θr,y, θr,z. As
a whole, the shape of the hand model has 26 degrees of freedom

θ = (θb,t,1, . . . , θr,z). (1)

CG images of typical hand models are shown in Fig. 4. The finger joints
dependently moves in natural actions [5]. In index, middle, ring, pinky fingers,
adjacent joint angles are usually similar. This kind of joint constraints reduce

(a) Wireframe model

θb,i,3

θb,i,2

θb,i,1

θo,p

θo,r

θo,m θo,i

θo,t

tx θx

ty θy

tz θz

(b) Model after shading

Fig. 3. Hand model
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(a) (b) (c) (d) (e)

Fig. 4. CG images of typical hand postures Fig. 5. Edge images of hand model

Table 1. Quantization width from search center

Δθc
bend [◦] −ζ 0 ζ

Δθc
open [◦] -6 0 6

Δθc
o,m [◦] - 0 -

Δθc
r,x [◦] -30 0 30

Δθc
r,y [◦] -15 0 15

Δθc
r,z [◦] -6 0 6

Δtc
x, Δtc

y [mm] -8 0 8
Δtc

z [mm] -40 0 40

the number of possible postures. Fig.5 shows the edge images generated from
the CG images of the typical hand postures under the constraints.

The posture parameters θ to be estimated are quantized. The change is shown
in Table 1 (The change of θb is represented by Δθc

bend, that of θo other than
middle is represented by Δθc

open). Each parameter of θb is assumed to change 0
or ±ζ. Each parameter has own ζ between 9 deg to 15 deg.

3 Matching Method

The system has several hand models with various dimensions: i.e. lengths and
widths of the palm and fingers. Since input image sequences are assumed to start
from a predefined simple shape and an initial position, the dimensions are easily
initialized at the first frame. The posture parameters to be estimated are around
the posture estimate at the previous image frame.

When each input image is obtained, the best-matched model is determined by
the maximum likelihood criterion. Let I denote edges and skin regions extracted
from an input image and Θj denote a quantized parameter vector of the j th
model. The criterion is

Θ̂ = argmax
Θj

P (I|Θj) (2)

where P (I|Θj) denotes the likelihood of the j th model for the input. The like-
lihood is defined based on the difference of the image I and the the appearance
of the shape model.
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3.1 Difference of Image and Appearance of Shape Model

In this paper, edge image I(e) and skin-color region image I(s) are used as the
image features of the input I. The difference between the silhouette of a typ-
ical hand model and that of an image is computed. Let A

(s)
θ be the silhou-

ette generated from a typical hand model θ. The Difference of the silhouette,
fskin(A(s)

θ ; I(s)), is defined as the area of A
(s)
θ which does not overlap with I(s).

The difference between the I(e) and the edge appearance A
(e)
θ , fdist(A

(e)
θ ; I(e)),

is computed by a modified chamfer matching, in which the edge points are
classified by gradient direction and the edges is matched by the original chamfer
matching in each direction class[13][18]. The distance is weighted by the edge
contrast and as a result fdist is defined as follows:

fdist(A
(e)
θ ; I(e)) =

∑

j

wθ,j min
k

(||xθ,j − xI(e),k|| + fI(e),k + g(j, k)) (3)

where xθ,j and xI(e),k denotes the j th edge point of the model and the k th
edge point of an input edge image. || · || is 2-dimensional Euclidean norm, wθ,j

is a weight constant, fI(e),k is a penalty for an edge with a low contrast,

wθ,j =
dθ,j∑
l dθ,l

. (4)

fI(e),k = −wddI(e),k (5)

where wd represents weight constant. The difference of gradient direction g(j, k)
is defined in terms of gradient direction φθ,j of the model edge and gradient
direction φI(e),k as

g(j, k) = wφ||φθ,j − φI(e),k||. (6)

where wφ represents weight constant. All weights are experimentally determined.
The modified chamfer matching is computed by using distance transformation
as fast as the original chamfer matching.

3.2 Discrimination Principle

The example of mis-matching by a conventional method has been shown as Fig. 1
in section 1. Let Θa and Θc respectively denote the posture parameter of model
(a) (fist shape) and (c) (flat shape). Suppose one case that the true hand posture
should be Θc. In this section, we describe the principle to discriminate the true
match from the wrong matches due to the complicated skin textures and the
backgrounds and finally introduce its stochastic forms giving the discriminating
criterion.

Then the probability of that the appearance AΘc is matched to the input
image, p(AΘc |Θc), should be large enough because the true posture is the same
as the one which generates the appearance, Θc.

On the other hand, the probability of AΘa (small fist shape), p(AΘa |Θc) can
be also large in spite of the posture difference between Θa and Θc because
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AΘa

AΘc

hand with Θa

hand with Θc

p(AΘa |Θa)p(AΘa |Θc)

p(AΘc |Θa) p(AΘc|Θc)

∼=

<

Fig. 6. Likelihood for edge images

almost all of the area of AΘa is included and the inner texture edges can be
wrongly matched to the finger contours. Therefore the conventional likelihood
maximization can often choose Θa mistakenly for flat hand shapes like Θc due
to the image capture noise, inaccuracy of the 3-D shape model and quantization
errors of the posture parameters.

In order to solve the mis-matches, we carefully analyze the behaviours of two
more probabilities: p(AΘa |Θa) and p(AΘc |Θa). p(AΘa |Θa) should be large and
p(AΘc |Θa) should be small because AΘc protrudes from the area of Θa. The
four probabilities take the behaviours as follows: while p(AΘa |Θc), p(AΘc |Θc)
are large together for the posture Θc, p(AΘa |Θa) is large and p(AΘc |Θa) is small
for the posture Θa (see Fig. 6). Therefore when the appearance AΘa and AΘc

are observed together, that posture should be estimated as Θc. When AΘa is
observed alone, that posture should be Θa.

When the likelihood of an appearance AΘk
to a model Θj , p(AΘk

|Θj), is
obtained for each possible combination of k and j in advance, the appropriate
model can be chosen by taking the all p(AΘk

|Θj) values into account like the
above discussion.

When k and j are identical, p(AΘk
|Θj) is equivalent to the conventional like-

lihood function. Otherwise, it means the likelihood of that an appearance AΘk

comes from a mistakenly chosen model Θj . We call the likelihood as ”mistakenly
matching likelihood” (MML).

3.3 Model Selection using Mistakenly Matching Likelihood

We introduce the stochastic discrimination criterion from the principle described
in the previous section by employing Bayesian estimation framework. Let AΘ1 ,
AΘ2 , . . . denote appearances of typical hand models. Assuming AΘ1 , AΘ2 , . . . are
exclusive under each Θj , the likelihood of Θj for I can be expanded as below:

p(I|Θj) =
∑

k p(I, AΘk
|Θj) =

∑
k p(I|AΘk

, Θj)p(AΘk
|Θj). (7)



602 A. Imai, N. Shimada, and Y. Shirai

Assuming the appearance AΘk
has all information to generate the observed

image I, condition Θj can be removed,

p(I|Θj) =
∑

k p(I|AΘk
)p(AΘk

|Θj). (8)

In the conventional maximum likelihood estimation method, the likelihood for
the case of k = j is considered alone. In contrast, we additionally consider the
MML for the case of k �= j.

Assuming that I(e) and I(s) are independent when a certain Θj is specified,

p(I|Θj) = p(I(e)|Θj)p(I(s)|Θj) (9)

is derived as the discrimination criterion in stochastic form.
The likelihood p(I(e)|Θj) and p(I(s)|Θj) are respectively derived from the

following equations:

p(I(e)|Θj) =
∑

k p(I(e)|A(e)
Θk

)p(A(e)
Θk

|Θj) (10)

p(I(s)|Θj) =
∑

k p(I(s)|A(s)
Θk

)p(A(s)
Θk

|Θj) (11)

The probabilistic distributions p(A(e)
Θk

|Θj) and p(I(e)|A(e)
Θk

) for edge images is

introduced the following sections. Those for skin color silhouette, p(A(s)
Θk

|Θj)

and p(I(s)|A(s)
Θk

) can be introduced in the same manner of those for edge image.

3.4 Likelihood of Typical Hand Models for Appearances

The likelihood of typical hand model is obtained as the following form because
of quantization errors of Θj .

p(A(e)
Θk

|Θj) =
∫

Θj
p(A(e)

Θk
, θj|Θj)dθj

=
∫

Θj
p(A(e)

Θk
|θj , Θj)p(θj |Θj)dθj

=
∫

Θj
p(A(e)

Θk
|θj)p(θj |Θj)dθj .

(12)

The sampling distribution of p(θj |Θj) can be assumed as a uniform distribu-
tion under each Θj . Assuming p(A(e)

Θk
|θj) is constant for each j since the the

quantization interval of Θj is small enough, p(A(e)
Θk

|θj) is reduced to p(A(e)
Θk

|θ∗
j ),

where θ∗
j is the mean value of the interval Θj . p(A(e)

Θk
|θ∗

j ) is derived as follows
from the definition of fdist in sec.3.1 and assuming that fdist obeys a gaussian
distributionfdist[12][13][17]:

p(A(e)
Θk

|θ∗
j ) = α

(e)
θ∗

j
exp(−(d(e)

M (k, j))2) (13)

where I
(e)
r (θ) is the edge image rendered from the posture θ, and

d
(e)
M (k, j) =

fdist(A
(e)
Θk

;I(e)
r (θ∗

j ))

σ
(e)
M

. (14)
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σ
(e)
M

2
is the variance of the value of fdist(A

(e)
Θk

; I(e)
r (θ∗

j )). σ
(e)
M is experimentally

determined. α
(e)
θ∗

j
is normalization constant,

α
(e)
θ∗

j
=

(∑
k exp(−(d(e)

M (k, j))2)
)−1

. (15)

In the same manner as the above,

p(A(s)
Θk

|θ∗
j ) = α

(s)
θ∗

j
exp(−(d(s)

M (k, j))2) (16)

where I
(s)
r (θ) is the silhouette generated from θ, and

d
(s)
M (k, j) =

fskin(A(s)
Θk

;I(s)
r (θ∗

j ))

σ
(s)
M

. (17)

σ
(s)
M

2
is the variance of the value of fskin(A(s)

Θk
; I(s)

r (θ∗
j )). α

(s)
θ∗

j
is normalization

constant,

α
(s)
θ∗

j
=

(∑
k exp(−(d(s)

M (k, j))2)
)−1

. (18)

3.5 Likelihood of Appearance

In this section, we explain the evaluation of the likelihood of an appearance
p(I(e)|A(e)

Θk
). The likelihood is defined based on the definition of fdist as

p(I(e)|A(e)
Θk

) = β
(e)
Θk

exp

(
−

(fdist(A
(e)
Θk

;I(e)))
2

σ
(e)
I

2

)
. (19)

where, σ
(e)
I

2
is the variance of (fdist(A

(e)
Θk

; I(e))). It is experimentally determined.

The normalization constant β
(e)
Θk

is derived from the integral condition of prob-
abilistic distributions:

∫
p(i(e)|A(e)

Θk
)di(e) = 1 (20)

Assuming that p(i(e)|A(e)
Θk

) can be large value only for i(e) of hand images and is
0 for most of other i(e),

∫
p(i(e)|A(e)

Θk
)di(e) ≈

∫
p(I(e)

r (θl)|A(e)
Θk

)dθl

≈
∑

l p(I(e)
r (θ∗l )|A(e)

Θk
) · δ

= β
(e)
Θk

∑
l exp(−(d(e)

M (k, l))2) · δ
≡ 1

(21)

where δ is the range of the quantization of Θ.

β
(e)
Θk

=
(∑

l exp(−(d(e)
M (k, l))2) · δ

)−1
(22)
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When A
(e)
Θk

wrongly matches to many of I
(e)
r (θl)(l �= k), β

(e)
Θk

becomes small. On

the other hand when a few of those, β
(e)
Θk

becomes large. It means that ambiguous
appearance model, which is easy to mis-match to other posture’s appearances,
are automatically low evaluated.

4 Estimation of More Accurate Posture Parameters

Posture parameters of the best-matched model are slightly different from that
of the hand of an input image due to quantization errors of posture parameters.
Thus, more accurate parameters must be estimated.

The wireframe CG model of the hand is deformed so that the model is matched
to an input image, and the 3-D hand shape is reconstructed from the deformed
model[19]. In this method, while the curved surface shape of the hand is re-
constructed, posture parameters are not estimated. We deform the CG model so
that the appearance of the model is matched to those of the input image by using
this method. The accurate posture parameters are estimated from coordinates
of the vertices of the triangle patches of the deformed wireframe model.

Parameters are estimated by the following steps of a procedure.

1. We make correspondences of edges of the best-matched model to those of
the input image.

2. The change of the appearance is evaluated from the correspondences so that
the edges of the model move toward those of the input image.

3. In order to reduce the huge search region of posture parameters due to the
high DOF of human hand, available deformations of surface mesh of the CG
model are learned by PCA in advance for each of typical postures, and then
the best approximated mesh deformation is estimated by the projection to
the PCA subspace.

4. Return to 1. We make correspondences of edges of the CG model deformed
at 3. to those of the input image. CG model is deformed by the change of ap-
pearance evaluated from the correspondence, again. Repeat these processes.

5. We evaluate the 2-dimensional Euclidean norm of the vertices of the trian-
gle patches between the deformed CG model and CG model generated by
the posture parameters. The sum of the norms is minimized using steepest
descent method. The posture parameters with minimized sum of the norms
are the posture estimate.

5 Experiment

We did the experiment of posture tracking for 250 hand images. The resolution of
the images is 320 × 240. The images are captured by 30 fps. In the conventional
method, where p(I|Θj) = p(I|A(e)

Θj
)p(I|A(s)

Θj
) is used as a matching criterion,

70.4% images are correctly matched. In our method, 82.0% images are correctly
matched. The success rates show effectiveness of our method.
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Fig. 7. Experimental result

Fig. 8. Experimental result

Fig. 9. Experimental result

Fig. 10. Experimental result

The example of the image which is correctly matched in our method while
mis-matched in the conventional method, is shown in Fig. 7. While the wrong
fist hand shape is matched in conventional method, the correct flat shape is
matched in our method.

Fig. 8 shows the results of an image sequence. In the input images, fingers
are partially occluded and the edges of the background are confusingly appeared
near the fingers. Such cases causing mismatches are correctly matched in our
method. Fig. 9 and Fig. 10 show the tracking results for other hand shapes.
These images are also correctly matched in our method.

6 Conclusion and Discussion

The paper introduces a Bayesian form of evaluation of posture candidates for
hand tracking in complex backgrounds. The novel concept of Mistakenly
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Matching Likelihood (MML) enables to discriminate the true posture candi-
date from other confusing ones when the mismatch of image features frequently
occurs. Experimental results for tracking of the real human hand show the effec-
tiveness of this evaluation method. Additional image features like optical flows
or range other than edges and silhouette should be considered on this framework
as future work.
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